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Abstract 

The present study aims to understand the socioecological implications of a new economic unit 

of analysis consisting of networks of cities at regional and megaregional scales.  

The proposed urban network sustainable progress indices, based on different conceptual 

scenarios, relies in three interrelated factors, the economic growth, the social cohesion and the 

urban ecology.  

One of the most important concept of the paradigm of sustainable progress (beyond the GDP) 

is that economic growth is only a branch of this development, and therefore, the social and 

ecological factors are strategic elements of urban systems. 

Even though there are formal ways of measure the sustainable progress (like the United Nations 

sustainable development index), the goal of this study is to propose a mathematical model, 

derived from Eurostat and satellite databases, to analyze different conceptual scenarios of urban 

growth in Europe.  

To accomplish this objective, statistical methods will be applied to infer empirical models from 

data, that later are reconstructed according to conceptual information, detecting the hidden 

relationships between different variables, provide a way in which new unseen observations 

could be characterized according to this method, and to study different scenarios. 

The statistics used are component analysis, factor analysis, cluster analysis, structural analysis, 

and a probabilistic method for the indices development. Besides the fact that the analysis are 

built upon a hypothesis, the model is built upon data. 

The method used is designed in a way the results have a conceptual background. The indices –

one for each scenario- are made in a way that their values provide an instinctively conceptual 

meaning. The index value is not an abstract number, but rather provides information about the 

position of an observation compared to the rest of them.  

The index is a static measure, but allows tracking how the urban network evolves through time, 

influenced by the three before mentioned factors of the sustainable progress. 

This study contributes to the debate on the essential properties of a regional and megaregional 

economy, optimizing the socioecological performance at the level of networks of cities.  

Urban networks at regional and megaregional scales have emerged because of the densification 

and acceleration of economic processes. They concentrate a huge amount of world population, 

production, innovation and wealth, although they are also important consumers of resources.  

The sustainable progress of urban networks is then a relevant issue. Our research question is 

whether existing regions and megaregions will evolve towards a sustainable path. This question 

is relevant and has direct implications for pro-active policy and planning.  

Keywords 
Beyond GDP, sustainable progress, urban network, socioecological system, megaregion, Europe  
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Introduction 

Beyond GDP 
The Gross Domestic Product (GDP) index was developed in the 1930s and 1940s amid the Great 

Depression and the First World War (Kuznets, 1934). Even before the United Nations (UN) began 

requiring countries to collect data to report national GDP, Simon Kuznets had warned against 

associating its growth with well-being.  

The GDP index measures mainly market transactions. It ignores environmental impacts and 

social inequality. Yet since the end of the Second World War, promoting GDP growth has 

remained the primary national policy goal in almost every country (Van der Bergh, 2009). 

In the meantime, researchers have become measuring what actually does make well-being. The 

environmental and social effects of GDP growth can be estimated (Kubiszewski, 2013). The 

psychology of human well-being can be analyzed comprehensively and quantitatively (Seligman, 

2012). Therefore, many studies has produced alternative measures of sustainable development.  

The chance to dethrone GDP is now in sight. In 2015, the UN announced the Sustainable 

Development Goals, a set of international objectives to improve global well-being. Developing 

integrated measures of urban sustainable progress attached to these goals offers the 

opportunity to define what well-being means, how to measure it, and how to achieve it.  

Missing the opportunity of sustainable urban progress would condone growing inequality and 

the continued destruction of the natural capital on which all life on earth depends. Hence, GDP 

is dangerously inadequate as a measure of quality of live (Constanza et al., 2014). 

Urban networks 
In regional socioecological policy, there is the usual tradeoff between economic development 

and environmental quality (Batabyal and Nijkamp, 2009). In this study, we aim to show some 

evidence that it is possible to combine both objectives. Large urban agglomerations could rely 

on macroeconomic models more based on knowledge than on consumption of resources: this 

is the main challenge of sustainable progress. 

Cities are not isolated systems, but are connected together to form networks. Traditionally, 

urban systems have been studied from a hierarchical point of view (Christaller, 1933). According 

to this view, the urban dimensions would reflect the existence of a hierarchy of goods and 

services, which would express the size of the market. However, later studies have shown that 

some urban structures are a mix of hierarchical (vertical) and non-hierarchical (horizontal) 

structures, in the form of “networks of cities” (Pred, 1977).  

Networks of cities have been defined as a set of relationships between complementary or similar 

centres, relationships that allow the emergence of economies of specialization (division of 

labour) or the formation of economies of synergy (cooperation and innovation) (Camagni, 2005). 

In these networks, cities benefit from economic advantages stemming not only from their own 

dimension, but also from the size of the whole network. Therefore, the paradigm of urban 

networks implicitly suggests extending the scope of analysis beyond the metropolitan area.  

The importance of this scaling is critical to achieve positive results in terms of economic 

efficiency, social equality and environmental sustainability. Night-time light (NTL) satellite data 

allows to analyze, on a global scale, the evolution of networks of cities towards structures that 

already exceed the metropolitan scale (Zhang and Seto, 2011), systems that are called urban 
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regions or even “megaregions”. Megaregions are emerging global economic units, the result of 

the concentration of production facilities, innovation and consumer markets (Florida et al., 

2007). Their development is based on socioeconomic dynamics, processes that cause profound 

changes on their environment and accelerate global change (Grazi et al., 2008). 

The demand for land to accommodate housing, economic activity, infrastructures and transport 

networks produces a significant pressure on the environment (Williams et al., 2000). Moreover, 

urban sprawl has been poorly managed (Breheny, 1992), which has led serious problems in 

quality of life and the ecological functioning. Applications developed on the basis NTL data 

framed by artificial satellites (Doll, 2008), allow us to define urban extensions, calculate energy 

consumption or estimate economic activity at the level of regions and megaregions (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Night-time light (NTL) satellite data (NASA, 2007) 

The key factor in regional and megaregional development is that urban growth does not start 

from a central agglomeration towards an empty area, but can instead encompass many other 

smaller urban areas and also some of a similar size to the central one (Ross, 2009). Consequently, 

a metropolitan region and a megaregion trend to polycentric expanding urban networks. 

Therefore, agglomeration economies can be achieved in urban polycentric networks (Marull et 

al., 2015), such as economies stemming from concentrated and diversified economic and social 

structure, and economies fed by the relationships that are developed in the network of cities. 

Thus, the study of economic growth, social cohesion and urban ecology, performed only through 

data from the city or country can be misleading. 

This study departs from the question whether these concentrations of activity in expanding 

urban networks can contribute or not to the sustainable progress of European societies, that is, 

if metropolitan regions and megaregions should be considered as a problem or a potential 

solution for a more “inclusive growth”. Inclusive growth expands upon traditional economic 
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growth models to include focus on the equity of health, human capital, environmental quality, 

and social protection (Hasmath, 2015). 

The main hypothesis of this study is that megaregions have emerged along with greater 

dissipation of energy (primary energy consumption –PEC) and the establishment of networks of 

cities (urban growth –URG, urban density –URD), that are more efficient in their economic 

activity (gross domestic product –GDP), knowledge creation (patents –PAT), and social cohesion 

(gross rate of employment –GRE). Suggesting the need for a new geographic scale to explore 

urban sustainability (Marull et al, 2013).  

In short, the object of this study is to approach the evolution of towns, cities and metropolis 

towards more complex urban systems at regional and megaregional level, and analyze the 

consequences of these units of analysis in the context of inclusive growth, using new models 

and indices of urban network sustainable progress. 

In order to develop the analysis we firstly study the statistical relationships between economic, 

social, ecological and urban variables of European regions (NUTS 3) in the period 1995-2010, 

considering that some of them pertain to a megaregion; and secondly, we develop ecological 

macroeconomic models and indices of urban network sustainable progress applied at regional 

and megaregional scales. 

Sustainable progress 
There is broad agreement that society should attempt for a high quality of life that is equitably 

shared and environmentally sustainable. Several reports have concluded that GDP is 

dangerously inadequate as a measure of quality of life, including those published by the 

Commission on the Measurement of Economic Performance and Social Progress (Stiglitz et al., 

2009), the Center for the Study of the Longer-Range Future (Constanza et al., 2009) and the 

European Commission’s ongoing Beyond GDP initiative.  

However, GDP remains fixed, and some economic interest groups are partly responsible (Van 

den Bergh, 2009). However, much of the problem is that no alternative measure emerges as a 

clear successor. Creating that successor will require a sustained, transdisciplinary effort to 

integrate metrics and build consensus.  

One opportunity for doing this consensus is the creation of the UN Sustainable Development 

Goals (SDG), a process that is now under way to replace the Millennium Development Goals 

(MDG). Established in 2000, the MDG comprise eight basic targets that include eradicating 

extreme poverty and establishing universal primary education, gender equality and 

environmental sustainability. 

Currently, both the MDG and the SDG are only lists of goals with isolated indicators. The SDG 

process should be expanded to include comprehensive and integrated measures of sustainable 

well-being (Griggs et al., 2013). There are significant obstacles to doing this, including 

bureaucratic inertia, the tendency of academia to work in isolation, and political interests. 

The successor to GDP should be a new set of metrics that integrates current knowledge of how 

social, economic and ecological factors collectively contribute to establishing and measuring 

sustainable progress. The new metrics must garner broad support from stakeholders. It is often 

said that what you measure is what you get. Building the future requires that we measure what 

we want, remembering that it is better to be approximately right than precisely wrong. 



7 
 

Our assumption is that urban networks, measured at regional and mega-regional levels, are 

complex adaptive systems, involving many variables and dimensions (territorial, social, 

economic, ecological), whose relations must be taken into account to understand the processes 

of change and to reverse certain trends through integrated sustainable urban planning. 

For this work, a database composed by three socioeconomic traditional variables (GDP, GRE, 

PAT), obtained from the European Office for Statistics (Eurostat), and three more novel variables 

(PEC, URG, URB) which are constructed using satellite imaging, are used (Marull et al., 2013).  

This technique based on satellite databases allows imputing values from a larger territory (i.e. 

countries) to smaller units of analysis (i.e. regions or megaregions) with enough precision to 

approximately measure urban network development.  

The period of analysis is from 1995 to 2010, according to the satellite data availability. The new 

sustainable progress indices are constructed according to conceptual factors of interest, which 

are economic growth, social cohesion, and urban ecology. 

Nevertheless, economic growth, social cohesion and urban ecology factors cannot be measured 

directly, but through the variables that are affected by them, which are the observable variables. 

Thus, factor analysis will be used to detect and measure these hidden factors of interest. They 

are called “scores”, and are used to: represent a parsimonious summary of original data; be 

more reliable than the observed variables; and get a measure of the latent factors. 

These scores do not give any information a priori, as it would provide, for example, the Gini 

index of inequality. To do this, a statistical analysis is applied in order to transform the 

distribution of the scores (which probably does not fit any known distribution) into a Laplace 

distribution, and then estimate its density function. This way, the score is transformed into a 

number that reflects the position (percentile) of a given observation in the overall ranking.  

In the present study, factors and variables of interest are analyzed in statistical terms. 

Observations are represented in graphics showing the variable average and the dispersion of 

values by the units of analysis –regions and megaregions. Several imputation methods and its 

consequences are studied and implemented. The factor analysis on the selected variables is 

applied, and the scores of this analysis are plotted. To verify the existence of specific 

homogenous groups a cluster analysis is made. The sustainable progress indicators are 

developed and finally, several urban network scenarios are studied.  

Objective 
The objective of the study is to develop indices of urban network sustainable progress (beyond 

the GDP) based on mathematical models. The models allow a better understanding of the 

optimal relationships of economic, social and ecological factors at different spatio-temporal 

scales. The study provides indices of the main scenarios that rule urban sustainable progress at 

European regional and megaregional levels, as well as tools for urban and regional planning. 
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Data Handling 

Urban networks at megaregional scale 
There are several methodologies that allow to define megaregions based on census data and a 

structured set of criteria (such as transport networks, population growth and land consumption) 

(Lang and Dhavale, 2005; Dewar and Epstein, 2007). 

We use night-time light (NTL) satellite data to monitor the dynamics of urbanization at 

megaregional level (Marull et al., 2013). One of the benefits of NTL data, in front of national 

statistics (i.e. European NUTS 3) is that it allows delineating and estimate indicators for 

functional analysis units that do not necessary coincide with administrative boundaries. 

We use the reference method proposed by Florida et al. (2007). According to this approach, a 

megaregion needs to fulfil two main criteria: it must be a contiguous lighted area with more 

than one major city or metropolitan region; and it must produce more than $ 100 billion in LRP 

(Light-based Regional Product). By that definition, there are 40 megaregions in the world, 

covering 18% of world population and producing 66% of its economic activity. 

The main database for delineating megaregions is the series of images produced by the sensor 

of the DMSP-OLS and publicly distributed by the National Geophysical Data Center of NOAA 

(National Oceanic and Atmospheric Administration). The images used are in GeoTiff format with 

a spatial resolution of approximately 1 km2 per pixel (30’). Each pixel sensor of the satellite 

assigns a specific value of light intensity. This value is explained as DN (Digital Number), has a 

radiometric resolution of 6 bits, and can vary between 0 and 63.  

Given the definition of megaregion as an area characterized by a substantial physical contiguity 

of human settlements, a minimum threshold of light intensity (DN = 8) and a minimum distance 

of 2 km grouping have been introduced. Using this methodological procedure in accumulative 

way for annual series of historical data (from 1995 to 2010), we have measured the evolution of 

the 12 megaregions that exist in Europe (Figure 2). 

It is important to stress that the urban network delineation approach of the megaregions used 

here is only a good approximation because it is not possible to define—owing to various 

technical problems (Small et al., 2005)—an exact relationship between bright areas detected by 

satellite and urbanized areas. However, the use of a single criterion and a common database to 

define different megaregions is a guarantee that the defined entities are effectively comparable.  

The name of the 12 European megaregions is abbreviated for an improved understanding of the 

forthcoming graphics (Table 1).  
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Table 1 Megaregions names 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 European Megaregions (Florida, 2008) 

 

  

Abbreviation Name 

NMR No Megaregion 

VIB Vienna-Budapest 

FRG Frankfurt-Stuttgart 

AMB Amsterdam-Brussels-Antwerp 

PRA Prague 

BER Berlin 

LIS Lisbon 

MAD Madrid 

BAL Barcelona-Lyon 

PAR Paris 

RMT Roma-Milan-Turin 

LON London 

GLB Glasgow-Edinburgh 
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Territorial units at regional scale 
The classification of territorial units for statistics (NUTS, for the French Nomenclature d’Units 

Territoriales Statistiques), is a geocode standard for referencing the administrative divisions of 

countries for statistical purposes. The standard was developed by the European Union. 

There are three levels of NUTS defined, with two levels of local administrative units (LAUs) 

below. Not all countries (NUTS 0) have every level of division, depending on their size. For 

example, one of the extreme cases is Luxembourg, which has only LAUs; the three NUTS 

divisions each correspond to the entire country itself. The NUTS classification is a hierarchical 

system, dividing the territory of the EU in: 

 NUTS 1: major socio-economic regions  

 NUTS 2: basic regions for the application of regional policies  

 NUTS 3: small regions for specific diagnoses  

The goal is to study the relationships of urban network sustainable progress variables at the 

smallest scale possible; this is at NUTS 3 level (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 European territorial units for statistics at country (NUTS 0) and regional level (NUTS 3)  

Period of analysis 
Given the limitations on terms of data availability, the period of analysis is from 1995 to 2010 

(Figure 4). This is mainly because the satellite imaging process requires to apply multiple layers 

of filters to identify the sources of information. The data is collected annually but, in order to 

simplify the analysis, we usually will represent four time points (1995, 2000, 2005 and 2010). 
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Figure 4 European megaregions’ growth and changes in NTL satellite data (1995-2010)  
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Selected variables 
A number of specific variables designed to evaluate the behavior of the units of analysis 

(countries, regions –NUTS 3, and megaregions) in different time frames are created (Table 2). 

Abbreviation Variable description 

GDPpc Gross domestic product, per capita 

GREpc Gross rate employment, per capita 

PATth Patents applications, per thousands of people 

PECpc Primary energy consumption, thousands of oil equivalent per capita 

URDpsk Urban density, people living in urban area per square kilometer 

URGpor Urban surface, percentage of urban area per NUTS3 

COUn Country name, at NUTS0 level 

MGAn Megaregion name, if NUTS3 belongs 

NUTS3 Region code, at NUTS3 level 

Year Years, between 1995 to 2010 
Table 2 Variables description 

GPDpc - Gross domestic product  
 Name: Gross domestic product –at current market prices  

 Scale: NUTS 3 regions  

 Source: Eurostat  

 Code: nama r e3gdp  

 Oldest data: 2000  

 Most recent data: 2011  

 Unit: Thousands of euros –purchasing power standards (PPS)- per inhabitant 

GREpc – Gross rate employment 
 Name: Gross rate employment –as proxy of social inequality 

 Scale: NUTS 3 regions  

 Source: Eurostat  

 Code: nama 10r 3empers  

 Oldest data: 2000  

 Most recent data: 2014  

 Unit of measure: Thousands of employed persons –per inhabitant 

PATth – Patents applications 
 Name: Patent applications to European Patent Office (EPO) –as proxy of knowledge 

 Scale: NUTS 3 regions  

 Source: Eurostat  

 Code: pat_ep_rtot  

 Oldest data: 1977  

 Most recent data: 2012  

 Unit of measure: Number of patents –per thousand inhabitants 

URDpsk - Urban population density 
 Name: Urban population density –as proxy of urban form 

 Scale: NUTS 3 region, using satellite data  

 Source: Eurostat, NASA  

 Code: demo r pjanaggr3  

 Oldest data: 1990  



13 
 

 Most recent data: 2014  

 Unit of measure: Number of inhabitants per square kilometer of illuminated surface 

URGpor - Urban surface percentage 
 Name: Urban surface –as proxy of urban extension 

 Scale: Imputed from 1x1 square kilometer data, measured by satellite data 

 Source: NASA 

 Oldest data: 1992  

 Most recent data: 2012 

 Unit of measure: Percentage of illuminated surface by NUTS 3 

PECpc – Primary energy consumption 
 Name: Primary energy consumption –as proxy of resource consumption 

 Scale: Imputed from NUTS 2 to NUTS 3 using the satellite illumination intensity  

 Source: Eurostat, NASA 

 Code: tsdcc120  

 Oldest data: 1990  

 Most recent data: 2015  

 Unit of measure: Million tons of oil equivalent (TOE) –per inhabitant 

 

Variables density 
The distribution of the variables is analyzed by a function that computes and draws a kernel 

density estimate, which is a smoothed version of the histogram. It can be seen that none of the 

variables follows a distinguishable distribution (Figure 5). When an index that characterize each 

region is constructed, these distributions will need to be normalized. 

The Figure 5 shows the averaged values, but in order to understand the context of the study, 

plots of the variables for each one of the independent regions of analysis are going to be made. 

This will allow us to understand in a better way the dispersion of values, the presence of outliers 

and the number of observations per megaregion.  
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Figure 5 Variables density 
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Variables in time 
The plot shows the behavior of the variables in time at NUTS 3 level, by country –to verify the 

results (from Figure 6 to Figure 11) and by megaregion –for the statistical proposal (from Figure 

12 to Figure 17). Some interesting patterns can be seen in it, that later may be helpful to 

understand the results of the different statistical analysis.  

Paris (PAR) is the megaregion with the highest average GDP per capita; the lowest is Lisbon (LIS) 

(Figure 12). Frankfurt-Stuttgart (FRG) has the highest number of employees per thousands of 

inhabitants; the lowest is Glasgow-Edinburgh (GLB) (Figure 13). The undisputed leader of patent 

generation is FRG; Madrid (MAD) and LIS are the last (Figure 14).  

In terms of urban density, PAR has the highest values, followed in the distance by Berlin (BER); 

LIS is the mega-region with the lowest urban density (Figure 15). The megaregions with the 

highest percentage of urbanizated surface are Amsterdam-Brussels-Antwerp (AMB) and PAR; 

the lowest is GLB (Figure 16). The highest energy per capita consumption is matched between 

GLB, Prague (PRA), and FRG; the lowest are BER and MAD (Figure 17).  

In general, GDPpc increase continuously, mostly without any change in its order, with a 

downturn in 2008 and a recovery by 2010. In 2009 the patents had a decrease probably because 

of the economic crisis. The differences in employment decreased during the years, probably 

because of the integration of the Eurozone. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



16 
 

Plots of variables by country 

 

Gross domestic product –GDPpc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 GDPpc at NUTS3 level by country 
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Gross rate employment –GREpc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 GREpc at NUTS3 level by country 
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Patents applications –PATth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 PATth at NUTS3 level by country   
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Urban population density –URDpsk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 URDpsk at NUTS3 level by country   
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Urban surface percentage –URGpor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 URGpor at NUTS3 level by country 
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Primary energy consumption –PECpc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 PECpc at NUTS3 level by country 
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Plots of variables by megaregion 

Gross domestic product –GDPpc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 GDPpc at NUTS3 level by megaregion 
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Gross rate employment –GREpc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 GREpc at NUTS3 level by megaregion 
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Patents applications –PATth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 PATth at NUTS3 level by megaregion 
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Urban population density –URDpsk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 URDpsk at NUTS3 level by megaregion 
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Urban surface percentage –URGpor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 URGpor at NUTS3 level by megaregion 
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Primary energy consumption –PECpc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 PECpc at NUTS3 level by megaregion 
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Missing data and imputation 
Missing data arise in almost all serious statistical analyses and there are different methods to 

handle it, including some relatively simple approaches that can offer reasonable results. 

Multiple imputations (Rubin, 1987) is the method of choice for complex incomplete data.  

Missing data that occur in more than one variable presents a special challenge. Two general 

approaches for imputing multivariate data have emerged: joint modeling and fully conditional 

specification, also known as multivariate imputation by chained equations (MICE).  

Multiple imputation by chained equations 
The Figure 18 illustrates the three main steps in MICE: imputation, analysis, and pooling. The 

software stores the results of each step in a specific class: mids, mira and mipo. We now explain 

each of these steps in more detail.  

The analysis starts with an observed, incomplete data set 𝑌𝑜𝑏𝑠. In general, the problem is that 

we cannot estimate Q from 𝑌𝑜𝑏𝑠 without making unrealistic assumptions about the unobserved 

data. Multiple imputation is a general framework that several imputed versions of the data by 

replacing the missing values by plausible data values. These plausible values are drawn from a 

distribution specifically modeled for each missing entry.  

 

 

 

 

 

 

 

 

 

 

Figure 18 Multiple Chained Equations 

In MICE, this task is being done by the function mice(). The first step portrays m = 3 imputed 

data sets 𝑌 (1), . . . , 𝑌 (3). The three imputed sets are identical for the non-missing data entries, 

but differ in the imputed values. The magnitude of these difference reflects our uncertainty 

about what value to impute. The package has a special class for storing the imputed data: a 

multiply imputed dataset of class mids. 

The second step is to estimate 𝑄 on each imputed data set, typically by the method we would 

have used if the data had been complete. This is easy since all data are now complete. The model 

applied to 𝑌 (1), . . . , 𝑌 (𝑚) is the generally identical. The estimates �̂�(1), . . . , �̂�(𝑚) will differ 

from each other because their input data differ. These differences are caused because of our 

uncertainty about what value to impute. The analysis results are collectively stored as a multiply 

imputed repeated analysis within an R object of class mira.  
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The last step is to pool the m estimates �̂�(1), . . . , �̂�(𝑚) into one estimate �̅� and estimate its 

variance. For quantities 𝑄 that are approximately normally distributed, we can calculate the 

mean over �̂�(1), . . . , �̂�(𝑚) and sum the within- and between-imputation variance according to 

the method outlined in Rubin (1987). 

Bayesian linear regression 
Bayes' theorem is used to update the probability for a hypothesis as more evidence or 

information becomes available. When the regression model has errors that have a normal 

distribution, and if a particular form of prior distribution is assumed, explicit results are available 

for the posterior probability distributions of the model's parameters. 

The Bayesian approach is based on the equal processing of the parameters of the model (𝜃) and 

the data analyzed (𝑌). Thus, the parameters 𝜃 are processed as usual random variables. In this 

way, the parameters are not unknown fixed values, but each parameter has its own probability 

distribution. The uncertainty is hereby introduced in the researched fixed value of the 

parameters. The Bayes rule is written in the special form as follows: 

𝑝(𝜃|𝑌 ) =
𝑝(𝑌|𝜃)𝑝(𝜃)

∫ 𝑝(𝑌|𝜃)𝑝(𝜃)𝑑𝜃
∝  𝑝(𝑌|𝜃)𝑝(𝜃) 

The above-mentioned expression indicates that the posterior distribution of the parameters 

𝑝(𝜃|𝑌 ) is proportional to the product of the sample distribution 𝑝(𝑌|𝜃) and the prior 

distribution of the parameters 𝑝(𝜃). This simple form of the rule encompasses the technical 

core of the Bayesian’s inference. 𝑌𝑚𝑖𝑠 denotes the missing data, and 𝑌𝑜𝑏𝑠 that the data 

observed are noticed. The Bayesian approach for data imputation is based on a joint posterior 

distribution of the parameters θ and the missing data 𝑌𝑚𝑖𝑠, which is conditional on the 

observed data and the model assumed: 𝑝(𝑌𝑚𝑖𝑠, 𝜃)|𝑌𝑜𝑏𝑠, 𝑋) .  

The model represents both the explanatory variables X that are observed and the model of 

missing values, which is ignorable in our case. The model of missing values is ignorable, when 

the missing data is missing at random (MAR), and when the parameters of the missing data 

mechanism and the parameters of the probability model are distinct. The data Y may have 𝑛𝑚𝑖𝑠 

missing values 𝑌𝑚𝑖𝑠 with the accessory explanatory variables noticed 𝑋𝑚𝑖𝑠. And the fully 

observed data are denoted by 𝑌𝑜𝑏𝑠 in 𝑋𝑜𝑏𝑠. The data may correspond to the model of linear 

regression: 

𝑌 =  𝛽1𝑥1  +  𝛽2𝑥2  +  … + 𝛽𝑘𝑥𝑘  =  𝑋𝛽 +  𝜖  

𝜖 ∼  𝑁(0, 𝜎2) 

 By which the coefficient and variance estimation is calculated from the fully noticed data: 

�̂�  =  (𝑋𝑜𝑏𝑠
𝑇 𝑋𝑜𝑏𝑠

−1 )𝑋𝑜𝑏𝑠
𝑇 𝑌𝑜𝑏𝑠 

𝑠2 =
(𝑌𝑜𝑏𝑠 − 𝑋𝑜𝑏𝑠�̂�)

𝑇
(𝑌𝑜𝑏𝑠 − 𝑋𝑜𝑏𝑠�̂�)

𝑛𝑜𝑏𝑠  − 𝑘
 

Correlation between variables 
The analysis methods that are going to be used to analyze the variables and to construct a model 

are funded in the correlation between the variables. Correlation is any of a broad class of 

statistical relationships involving dependence, though in common usage it most often refers to 

the extent to which two variables have a linear relationship with each other.  
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Formally, random variables are dependent if they do not satisfy a mathematical property of 

probabilistic independence. In an informal parlance, correlation is synonymous with 

dependence. Several correlation coefficients measure the degree of correlation. The most 

common of these is the Pearson correlation coefficient, which is sensitive only to a linear 

relationship between two variables (which may be present even when one variable is a nonlinear 

function of the other). The Pearson product-moment correlation coefficient is calculated as 

follows: 

𝜌𝑥,𝑦  =  𝑐𝑜𝑟𝑟(𝑋, 𝑌 ) =
𝑐𝑜𝑣(𝑋, 𝑌 )

𝜎𝑋𝜎𝑦
=
𝐸[(𝑋 − µ𝑋)(𝑌 − µ𝑌 )] 

𝜎𝑋𝜎𝑦
 

Where E is the expected value operator, cov means covariance, and corr is a widely used 

alternative notation for the correlation coefficient t. In our case, the data has missing values. 

This means that for some observations, some variables are present and some others not. The 

first option would be to impute these values, but this is a technique that creates new values to 

resemble the original data, but that there are not real. 

To avoid the use of imputations, the correlation matrix is going to be calculated using a method 

called pairwise complete. This method search variable by variable and calculates the correlation 

between them, even though in that specific observation it may have missing values. 

Implementation 
Once the information has been mapped in order to assess the amount of missing information 

and given the aforementioned methods the imputation is made over the data. Given the 

distribution of missing values, it can be seen that the information it is to a certain degree missing 

at random but for the previous years the number of cases increases. The imputation is made 

using the package MICE, which stands for Multiple Imputation using Chain Equations. The 

method of imputation chosen is the Bayesian Linear Regression. 

The following figures show the distribution of missing data over the variables (Figure 19), and 

the distribution over countries and years (Figure 20). If the amount of missing data is small 

relative to the size of the dataset, then leaving out the few samples with missing features is the 

best strategy in order not to bias the analysis, however leaving out available data points deprives 

the data of some amount of information.  

Usually, a safe maximum threshold is 5% of the total for large datasets. If missing data for a 

certain feature or sample is more than 5% then you probably should leave that feature or sample 

out. Given the fact that the goal of the first analysis is to determine the relationships between 

the variables, a way to obtain the correlations of incomplete data sets is to determine this in a 

pairwise fashion. This way, a function is created that accomplishes the next objectives:  

 Measure the percentage of missing values of a given variable.  

 Imputes no more than 5% of these missing values.  

 Deletes no logical values (i.e. negative values).  

 Determines and saves only correlation matrix (because of memory allocation issues).  

 Repeat the process a specified amount of times and determines the average of all the 

simulations.  

The mean relative difference of imputed and not imputed correlation matrices is 0.09. 
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Figure 19 Distribution of missing values 

 

 

 

 

 

 

 

 

 

 

Figure 20 Missing values per country and year 

  



32 
 

Given the small difference between the imputed and original data in the correlation matrix, it is 

concluded that the imputations are going to be used only for visualization purposes, which 

means that they are not going to be used in the multivariate analysis. This is because the 

imputation itself means to introduce a bias in the correlations that could misrepresent the 

information.  

The imputations are constructed using the observable relationships, but given the small 

difference between the imputed (Table 3) and non-imputed values (Table 4), and the fact that 

the goal of the further statistical analysis is to determine the hidden correlations between 

variables, the imputation may introduce correlations that are simply not there. Because the data 

is not missing at random (it is greater in the first years and for certain countries) and would 

induce instability in the statistical analysis.  

Variable PATth GDPpc PECpc GREpc URDpsk URGpor 

PATth 1.00 0.36 -0.00 0.27 0.07 0.28 

GDPpc 0.36 1.00 -0.14 0.75 0.42 0.32 

PECpc -0.00 -0.14 1.00 -0.23 -0.46 -0.18 

GREpc 0.27 0.75 -0.23 1.00 0.36 0.22 

URDpsk 0.07 0.42 -0.46 0.36 1.00 0.29 

URGpor 0.28 0.32 -0.18 0.22 0.29 1.00 
Table 3 Correlation matrix: imputed data 

Variable PATth GDPpc PECpc GREpc URDpsk URGpor 

PATth 1.00 0.38 -0.05 0.28 0.08 0.30 

GDPpc 0.38 1.00 -0.22 0.76 0.38 0.32 

PECpc -0.05 -0.22 1.00 -0.28 -0.47 -0.25 

GREpc 0.28 0.76 -0.28 1.00 0.33 0.25 

URDpsk 0.08 0.38 -0.47 0.33 1.00 0.29 

URGpor 0.30 0.32 -0.25 0.25 0.29 1.00 
Table 4 Correlation matrix: no imputed data 
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Statistical analysis 
The economic, social and ecological factors of urban sustainable progress cannot be measured 

directly, but through the variables that are affected by them, which are the observable variables. 

Thus, several statistical analysis will be used to detect and measure these hidden factors: 

component analysis, factor analysis, structural equation model, and cluster analysis. 

Component analysis 
Briefly, Principal Component Analysis (PCA) is used to extract the important information from a 

multivariate data table and to express this information as a set of new variables called principal 

components. The information in a given data set corresponds to the total variation it contains. 

The goal of PCA is to identify directions along which the variation in the data is maximal. These 

directions (called also principal components) can be used to visualize graphically the data. 

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly uncorrelated 

variables called principal components (or sometimes, principal modes of variation). The number 

of principal components is less than or equal to the smaller of the number of original variables 

or the number of observations.  

This transformation is defined in such a way that the first principal component has the largest 

possible variance (that is, accounts for as much of the variability in the data as possible), and 

each succeeding component in turn has the highest variance possible under the constraint that 

it is orthogonal to the preceding components. The resulting vectors are an uncorrelated 

orthogonal basis set. PCA is sensitive to the relative scaling of the original variables. 

Suppose a random vector X: 

𝑋 = (

𝑋1
𝑋2
⋮
𝑋𝑃

) 

With population variance-covariance matrix: 

𝑣𝑎𝑟(𝑋) = 𝛴 = (

𝜎11 𝜎12 … 𝜎1𝑝
⋮ 𝜎22 … 𝜎2𝑝
⋮ ⋮ ⋱ ⋮
𝜎𝑝1 𝜎𝑝2 ⋯ 𝜎𝑝𝑝

) 

Consider the linear combinations: 

𝑌1 = 𝑒11𝑋1 + 𝑒12𝑋2 +⋯+ 𝑒1𝑝𝑋𝑝 

𝑌2 = 𝑒21𝑋1 + 𝑒22𝑋2 +⋯+ 𝑒2𝑝𝑋𝑝 

⋮ 

𝑌𝑝 = 𝑒𝑝1𝑋1 + 𝑒𝑝2𝑋2 +⋯+ 𝑒𝑝𝑝𝑋𝑝 

Each of these can be thought of as a linear regression, predicting Yi from X1,  X2, . . . ,  Xp. There 

is no intercept, but ei1,  ei2, . . . ,  eip can be viewed as regression coefficients. 

Note that Yi is a function of our random data, and so is also random. Therefore, it has a 

population variance: 
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𝑣𝑎𝑟(𝑌𝑖) = ∑∑𝑒𝑖𝑘𝑒𝑖𝑙𝜎𝑘𝑙

𝑞

𝑙=1

𝑝

𝑘=1

= 𝑒𝑖
′𝛴𝑒𝑖 

 

Moreover, Yi and Yj will have a population covariance: 

𝑐𝑜𝑣(𝑌𝑖, 𝑌𝑗) = ∑∑eikejlσkl

𝑞

𝑙=1

𝑝

𝑘=1

= ei
′𝛴ej 

Here the coefficients eij are collected into the vector: 

 

𝑒𝑖 = (

𝑒𝑖1
𝑒𝑖2
⋮
𝑒𝑖𝑃

) 

ith principal component 𝑌𝑖  : 

We select ei1, ei2, … , eip that maximizes: 

𝑣𝑎𝑟(𝑌𝑖) = ∑∑eikeilσkl

𝑞

𝑙=1

𝑝

𝑘=1

= 𝑒𝑖
′𝛴𝑒𝑖 

Subject to the constraint that the sums of squared coefficients add up to one along with additional 

constraint this new component will be uncorrelated with all the previously defined components. 

𝑒′𝑖𝑒𝑖 =∑𝑒𝑖𝑗
2

𝑝

𝑗=1

= 1 

𝑐𝑜𝑣(𝑌1, 𝑌𝑖) = ∑∑eikejlσkl

q

l=1

p

k=1

= 𝑒1
′𝛴𝑒𝑖 = 0, 

𝑐𝑜𝑣(𝑌2, 𝑌𝑖) = ∑∑eikejlσkl

q

l=1

p

k=1

= 𝑒2
′𝛴𝑒𝑖 = 0, 

⋮ 

𝑐𝑜𝑣(𝑌𝑖−1, 𝑌𝑖) = ∑∑eikejlσkl

𝑞

𝑙=1

𝑝

𝑘=1

= 𝑒′𝑖−1𝛴𝑒𝑖 = 0, 

Therefore, all principal components are uncorrelated with one another. 

PCA is mostly used as a tool in exploratory data analysis and for making predictive models. It is 

often used to visualize genetic distance and relatedness between populations. PCA can be done 

by eigenvalue decomposition of a data covariance (or correlation) matrix or singular value 

decomposition of a data matrix, usually after mean centering (and normalizing or using Z-scores) 

the data matrix for each attribute. The results of a PCA are usually discussed in terms of 
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component scores, sometimes called factor scores (the transformed variable values 

corresponding to a particular data point), and loadings (the weight by which each standardized 

original variable should be multiplied to get the component score). 

PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can 

be thought of as revealing the internal structure of the data in a way that best explains the 

variance in the data. If a multivariate dataset is visualized as a set of coordinates in a high-

dimensional data space (1 axis per variable), PCA can supply the user with a lower-dimensional 

picture, a projection of this object when viewed from its most informative viewpoint. This is 

done by using only the first few principal components so that the dimensionality of the 

transformed data is reduced. 

PCA is closely related to factor analysis. Factor analysis typically incorporates more domain 

specific assumptions about the underlying structure and solves eigenvectors of a slightly 

different matrix. 

Factor analysis 
The factor analysis has the goal of determining the concepts of primary interest, called latent 

variables, that are not possible to be measured directly but can be observed in the manifest 

variables. The method of analysis most generally used to help uncover the relationships 

between the assumed latent variables and the manifest variables is factor analysis.  

The model on which the method is based is essentially that of multiple regression, except now 

the manifest variables are regressed on the unobservable latent variables (often referred to in 

this context as common factors), so that direct estimation of the corresponding regression 

coefficients (factor loadings) is not possible. 

Factor analysis comes in two distinct varieties. The first is exploratory factor analysis, which is 

used to investigate the relationship between manifest variables and factors without making any 

assumptions about which manifest variables are related to which factors. The second is 

confirmatory factor analysis, which is used to test whether a specific factor model postulated a 

priori provides an adequate fit for the covariances or correlations between the manifest 

variables. 

Exploratory factor analysis 
The basis of factor analysis is a regression model linking the manifest variables to a set of 

unobserved (and unobservable) latent variables. In essence, the model assumes that the 

observed relationships between the manifest variables (as measured by their covariances or 

correlations) are a result of the relationships of these variables to the latent variables. Since it is 

the covariances or correlations of the manifest variables that are central to factor analysis, we 

can assume that the manifest variables all have zero mean. 

The model links the observed variables 𝑥𝑡 =  (𝑥1, . . . , 𝑥𝑝) to a set of latent factors 𝑓𝑡 =

 (𝑓1, . . . , 𝑥𝑚), with m < p: 

𝑥1  =  𝑞11𝑓1  +  𝑞12𝑓2  +  … + 𝑞1𝑚𝑓𝑚  +  𝑢1   

𝑥𝑖  =  𝑞𝑖1𝑓1  +  𝑞𝑖2𝑓2  + … + 𝑞𝑖𝑚𝑓𝑚  + 𝑢𝑖   

𝑥𝑝  =  𝑞𝑝1𝑓1  +  𝑞𝑝2𝑓2  +  … + 𝑞𝑝𝑚𝑓𝑚  +  𝑢𝑝 

Where the variables in random vector 𝑢𝑡 =  (𝑢1, . . . , 𝑢𝑝) are called specific or unique factors 

and the coefficients 𝑞𝑖𝑗 in the model are called factor loadings. In short:  
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𝑥 =  𝑄𝑓 +  𝑢 

The linear equation in factorial models a matrix form and applied to scaled data is: 

𝑍 =  𝑄𝐹 +  𝑈 

Where Z are the scaled observed variables, F the latent factors, U the unique factors (or 

residuals) and Q are the factors loadings. 

The correlation matrix ∑ can be calculated as: 

Σ = 𝑄𝑄𝑡 + 𝜓 

Were psi being the specific factors. 

The 𝑞𝑖𝑗, which are the elements of Q, are essentially the regression coefficients of the observed 

variables on the common factors remembering that the common factors are hidden variables, 

so the meaning of regression is inappropriate. But in the context of factor analysis these 

regression  coefficients are known as the factor loadings and show how each observed variable 

depends on the common factors. The factor loadings are used in the interpretation of the 

factors. In the described factorial model, with the given hypotheses, loadings are the correlation 

coefficients between observed variables and common factors. 

We assume that the random disturbance (or specific factors) terms are uncorrelated with each 

other and with the factors. The elements are specific to each manifest variable and hence are 

generally better known in this context as specific variates. The two assumptions imply that, given 

the values of the common factors, the manifest variables are independent; that is, the 

correlations of the observed variables arise from their relationships with the common factors. 

Factor analysis is essentially unaffected by the rescaling of the variables. In particular, if the 

rescaling factors are the ratio between its value and its standard deviation, then the rescaling is 

equivalent to applying the factor analysis model to the correlation matrix of the x variables and 

the factor loadings and specific variances that result can be found simply by scaling the 

corresponding loadings and variances obtained from the covariance matrix. Consequently, the 

factor analysis model can be applied to either the covariance matrix or the correlation matrix 

because the results are essentially equivalent. 

Number of factors 

Given the number of observable variables, the number of factors needs to be established. With 

too few factors there will be too many high loadings, and with too many factors, factors may be 

fragmented and difficult to interpret convincingly. 

For our data set the Cumulative Variance criteria is applied. Choosing k might be done by 

examining solutions corresponding to different values of k and deciding subjectively which can 

be given the most convincing interpretation. 

Factor rotation 

There is no unique solution for the factor loading matrix. 

We can see that this is so by introducing an orthogonal matrix M of order k ×k and rewriting the 

basic regression equation linking the observed and latent variables as: 

𝑍 = (𝑄𝑀)(𝑀𝑇𝐹) +  𝑈 

This model implies that the covariance matrix of the observed variables is: 
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Σ = (𝑀𝑄)(𝑀𝑄)𝑡 +𝜓 

This “new” model satisfies all the requirements of a k-factor model as previously outlined with 

new factors 𝐹∗  =  𝑀𝐹 and the new factor loadings 𝑄𝑀. Rotations do not change the factorial 

characteristics: number of factors, communalities and specificities.  

Structural equation model 
An exploratory factor analysis is used in the early investigation of a set of multivariate data to 

determine whether the factor analysis model is useful in providing a parsimonious way of 

describing and accounting for the relationships between the observed variables. The analysis 

will determine which observed variables are most highly correlated with the common factors 

and how many common factors are needed to give an adequate description of the data. In an 

exploratory factor analysis, no constraints are placed on which manifest variables load on which 

factors. 

The models will be constructed according to some theoretical criteria in order to obtain a model 

that has a valid interpretation. This may happen when the loadings of some variables on some 

factors are fixed at zero because they were “small” in the exploratory analysis and perhaps to 

allow some pairs of factors but not others to be correlated. 

It is important to emphasize that whilst it is perfectly appropriate to arrive at a factor model to 

submit to a confirmatory analysis from an exploratory factor analysis, the model must be tested 

on a fresh set of data. Models must not be generated and tested on the same data. However, 

confirmatory analysis can be applied directly to data, without a previous exploring, if some 

common factors can be assumed to cause the observed variables by applying theoretical 

reasoning. 

Confirmatory factor analysis models are a subset of a more general approach to modelling latent 

variables known as structural equation modelling or covariance structure modelling. Such 

models allow both response and explanatory latent variables linked by a series of linear 

equations. Although more complex than confirmatory factor analysis models, the aim of 

structural equation models is essentially the same, namely to explain the correlations or 

covariances of the observed variables in terms of the relationships of these variables to the 

assumed underlying latent variables and the relationships postulated between the latent 

variables themselves.  

One way to look at SEM models is that they are simply an extension of linear regression. A first 

extension is that you can have several regression equations at the same time. A second 

extension is that a variable that is an independent (exogenous) variable in one equation can be 

a dependent (endogenous) variable in another equation. A third extension is that some of the 

variables are observable and others hidden. 

Path analysis was introduced as a method for studying the direct and indirect effects of variables. 

The most important feature of path analysis is a diagram showing how a set of explanatory 

variables influence a dependent variable under consideration. How the paths are drawn 

determines whether the explanatory variables are correlated causes, mediated causes, or 

independent causes. 

Model identification 
If different sets of parameter values will lead to the same predicted covariance matrix, the model 

is said to be unidentifiable. Formally, a model is identified if and only if Σ(𝜃1)  =  Σ(𝜃2) implies 
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that 𝜃1  =  𝜃2, which are the parameter values. Otherwise, it may happen that increased by 

some amount of a given parameter and other decreased by the same amount without altering 

the covariance matrix predicted by the model. 

In confirmatory factor analysis models and more general covariance structure models, 

identifiability depends on the choice of model and on the specification of fixed, constrained (for 

example, two parameters constrained to equal one another), and free parameters. If a 

parameter is not identified, it is not possible to find a consistent estimate of it. Establishing 

model identification in confirmatory factor analysis models (and in structural equation models) 

can be difficult because there are no simple, practicable, and universally applicable rules for 

evaluating whether a model is identified, although there is a simple necessary but not sufficient 

condition for identification, namely that the number of free parameters in a model, t, be less 

than 𝑞(𝑞 +  1)/2. 

In our case, the model converges within a certain number of iterations, and if it’s not possible 

to compute the standard errors, it may be possible that the model has not been correctly 

identified. 

Model fit 
Structural equation models will contain a number of parameters that need to be estimated from 

the covariance or correlation matrix of the manifest variables. Estimation involves finding values 

for the model parameters that minimize a discrepancy function indicating the magnitude of the 

differences between the elements of S, the observed covariance matrix of the manifest variables 

and those of 𝛴(𝜃), the covariance matrix implied by the fitted model (i.e., a matrix the elements 

of which are functions of the parameters of the model), contained in the vector 𝜃 =

 (𝜃1, . . . , 𝜃𝑡). 

The function that is going to minimize the discrepancy between S and Σ in this group is the 

Unweighted Least Squares (ULS) discrepancy function: 

𝑈𝐿𝑆 =
1

2
[𝑡𝑟(𝑆 − Σ)2] 

This discrepancy function is analogous to ordinary least squares estimation in regression. This 

function differs from the others in that it is not built on an assumption of multivariate normality 

in the data. As a result, this discrepancy function does not, in itself, lead to estimated standard 

errors or an overall chi-square fit statistic.  

Confirmatory factor analysis models 
In a confirmatory factor model the loadings for some observed variables on some of the 

postulated common factors will be set a priori to zero. Additionally, some correlations between 

factors might also be fixed at zero. Such a model is fitted to a set of data by estimating its free 

parameters; i.e., those not fixed at zero. 

A series of models is going to be analyzed in the time frame. The most fitted models are going 

to be applied to time frames of 5 years. The models are constructed by a function that relates 

the latent variables with the observed variables by filtering the loadings of the factor analysis. 

This is made by establishing a threshold limit to these loadings. If loadings surpass this limit they 

are included, otherwise, specific observed variable is not included in that specific latent variable. 

The strategy is to first create a measurement model, filtering the factors in observed variables 

in each latent variable according to a threshold that is going to be progressively increased until 
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the model converges. If there are any errors once the model has converged, this is going to be 

solved by introducing or modifying residual covariancies between the observed variables. 

The parameters of analysis are going to be: 

- Unweighted Least Squares (ULS) as parameter estimator. 

- Fixed variances of all the latent variables in a CFA model to unity. 

- Complete data only 

The analysis is going to be performed using the package Lavaan (Table 5), a package for 

structural equation modeling implemented in the R system for statistical computing. Lavaan is 

an acronym for latent variable analysis, and its name reveals the long-term goal: to provide a 

collection of tools that can be used to explore, estimate, and understand a wide family of latent 

variable models, including factor analysis, structural equation, longitudinal, multilevel, latent 

class, item response, and missing data models. 

Formula type Operator Mnemonic 

Latent variable =~ is manifested by 

Regression ~ is regressed on 

(Residual) (co)variance ~~ is correlated with 

Intercept ~1 intercept 
Table 5 Formula types that can be used to specify a model in the lavaan model syntax. 

Cluster analysis 
One of the most basic abilities of living creatures involves the grouping of similar objects to 

produce a classification. The idea of sorting similar things into categories is clearly a primitive 

one because early humans, for example, must have been able to realize that many individual 

objects shared certain properties such as being edible, or poisonous, or ferocious, and so on. 

Classification of the phenomena being studied is an important component of virtually all 

scientific research. In the behavioral sciences, these “phenomena” may be individuals or 

societies, or even patterns of behavior or perception. The investigator is usually interested in 

finding a classification in which the items of interest are sorted into a small number of 

homogeneous groups or clusters, the terms being synonymous. Most commonly the required 

classification is one in which the groups are mutually exclusive (an item belongs to a single 

group) rather than overlapping (items can be members of more than one group). 

But often a classification may seek to serve a more fundamental purpose. In psychiatry, for 

example, the classification of psychiatric patients with different symptom profiles into clusters 

might help in the search for the causes of mental illnesses and perhaps even lead to improved 

therapeutic methods. And these twin aims of prediction (separating diseases that require 

different treatments) and a etiology (searching for the causes of disease) for classifications will 

be the same in other branches of medicine. 

Cluster analysis is a generic term for a wide range of numerical methods with the common goal 

of uncovering or discovering groups or clusters of observations that are homogeneous and 

separated from other groups. Clustering techniques essentially try to formalize what human 

observers do so well in two or three dimensions. Clusters are identified by the assessment of 

the relative distances between points. 

The cluster analysis, in the context of the whole analysis itself, has the goal of discover the 

groups of the observed regions that share characteristics in terms of the hidden relationships 
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that govern the different axis of sustainable development, and it may give a helpful insight 

identifying trends or to understand its behaviors over time.  

Hierarchical clustering  
This class of clustering methods produces a hierarchical classification of data. In a hierarchical 

classification, the data are not partitioned into a particular number of classes or groups at a 

single step. Instead, the classification consists of a series of partitions that may run from a single 

“cluster” containing all individuals to n clusters, each containing a single individual. 

Agglomerative hierarchical clustering techniques produce partitions by a series of successive 

fusions of the n individuals into groups. With such methods, fusions, once made, are irreversible, 

so that when an agglomerative algorithm has placed two individuals in the same group they 

cannot subsequently appear in different groups. Since all agglomerative hierarchical techniques 

ultimately reduce the data to a single cluster containing all the individuals, the investigator 

seeking the solution with the best-fitting number of clusters will need to decide which division 

to choose. The problem of deciding on the “correct” number of clusters will be taken up later. 

An agglomerative hierarchical clustering procedure produces a series of partitions of the data, 

𝑃𝑛, 𝑃𝑛−1, . . . , 𝑃1. The first, Pn, consists of n single member clusters, and the last, P1, consists of a 

single group containing all n individuals. The basic operation of all methods is similar:  

- Clusters C1, C2,...,Cn each containing a single individual 

- Find the nearest pair of distinct clusters, say 𝐶𝑖 and  𝐶𝑗, merge 𝐶𝑖 and  𝐶𝑗, delete 𝐶𝑗, and 

decrease the number of clusters by one. 

- If the number of clusters equals one, then stop; otherwise return to 1. 

But before the process can begin, an inter-individual distance matrix or similarity matrix needs 

to be calculated. There are many ways to calculate distances or similarities between pairs of 

individuals, but here we only deal with a commonly used distance measure, Euclidean distance 

is calculated as: 

𝑑𝑖𝑗  = √∑(𝑥𝑖𝑘  − 𝑥𝑗𝑘)
2

𝑞

𝑘=1

  , 

Where 𝑑𝑖𝑗  is the Euclidean distance between individual i with variable values𝑥𝑖1, 𝑥𝑖2…𝑥𝑖𝑞 and 

individual j with variable values 𝑥𝑗1, 𝑥𝑗2…𝑥𝑗𝑞. The Euclidean distances between each pair of 

individuals can be arranged in a matrix that is symmetric because𝑑𝑖𝑗 = 𝑑𝑗𝑖  and has zeros on the 

main diagonal. Such a matrix is the starting point of many clustering examples, although the 

calculation of Euclidean distances from the raw data may not be sensible when the variables are 

on very different scales. In such cases, the variables can be standardized in the usual way before 

calculating the distance matrix, although this can be unsatisfactory in some cases (see Everitt et 

al. 2011). 

Given an inter-individual distance matrix, the hierarchical clustering can begin, and at each stage 

in the process the methods fuse individuals or groups of individuals formed earlier that are 

closest (or most similar). So as groups are formed, the distance between an individual and a 

group containing several individuals and the distance between two groups of individuals will 

need to be calculated. How such distances are defined leads to a variety of different techniques. 

Two simple inter-group measures are 
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𝑑𝐴𝐵  =
min(𝑑𝑖𝑗)

 𝑖 ∈ 𝐴, 𝑖 ∈ 𝐵
 

𝑑𝐴𝐵  =
max(𝑑𝑖𝑗)

 𝑖 ∈ 𝐴, 𝑖 ∈ 𝐵
 

Where 𝑑𝐴𝐵  is the distance between two clusters A and B, and 𝑑𝑖𝑗 is the distance between 

individuals i and j found from the initial inter-individual distance matrix. The first inter-group 

distance measure above is the basis of single linkage clustering, the second that of complete 

linkage clustering. Both these techniques have the desirable property that they are invariant 

under monotone transformations of the original inter-individual distances; i.e., they only 

depend on the ranking on these distances, not their actual values. A further possibility for 

measuring inter-cluster distance or dissimilarity is 

𝑑𝐴𝐵 =
1

𝑛𝐴𝑛𝐵
∑∑𝑑𝑖𝑗

𝑖∈𝐵𝑖∈𝐴

 

where 𝑛𝐴 and 𝑛𝐵 are the numbers of individuals in clusters A and B. This measure is the basis of 

a commonly used procedure known as group average clustering. Hierarchical classifications may 

be represented by a two-dimensional diagram known as a dendrogram, which illustrates the 

fusions made at each stage of the analysis.  

In our case, the Ward's method criterion is applied in the hierarchical cluster analysis. Ward's 

minimum variance method is a special case of the objective function approach. Ward suggested 

a general agglomerative hierarchical clustering procedure, where the criterion for choosing the 

pair of clusters to merge at each step is based on the optimal value of an objective function. 

K-means clustering 
K-means clustering is a type of unsupervised learning, which is used when there is unlabeled 

data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups 

in the data, with the number of groups represented by the variable K. The algorithm works 

iteratively to assign each data point to one of K groups based on the features that are provided. 

Data points are clustered based on feature similarity. The results of the K-means clustering 

algorithm are: 

- The centroids of the K clusters, which can be used to label new data 

- Labels for the training data (each data point is assigned to a single cluster) 

Rather than defining groups before looking at the data, clustering allows to find and analyze the 

groups that have formed organically. 

Each centroid of a cluster is a collection of feature values which define the resulting groups. 

Examining the centroid feature weights can be used to qualitatively interpret what kind of group 

each cluster represents.   

Algorithm 

The Κ-means clustering algorithm uses iterative refinement to produce a final result. The 

algorithm inputs are the number of clusters Κ and the data set. The data set is a collection of 

features for each data point. The algorithms start with initial estimates for the Κ centroids, which 

can either be randomly generated or randomly selected from the data set. The algorithm then 

iterates between two steps. 
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Data assignment step 

Each centroid defines one of the clusters. In this step, each data point is assigned to its nearest 

centroid, based on the squared Euclidean distance. More formally, if ci is the collection of 

centroids in set C, then each data point x is assigned to a cluster based on 

arg𝑚𝑖𝑛𝐶𝑖 𝜖 𝐶 𝑑𝑖𝑠𝑡(𝐶𝑖, 𝑥)
2  

Where dist is the standard (L2) Euclidean distance. Let the set of data point assignments for each 

𝑖𝑡ℎ cluster centroid be 𝑆𝑖. 

Centroid update step 

In this step, the centroids are recomputed. This is done by taking the mean of all data points 

assigned to that centroid's cluster. 

𝐶𝑖 =
1

|𝑆𝑖|
∑ 𝑥𝑖
𝑥𝑖𝜖𝑆𝑖

 

The algorithm iterates between steps one and two until some stopping criteria is met (i.e., no 

data points change clusters, the sum of the distances is minimized, or some maximum number 

of iterations is reached). 

This algorithm is guaranteed to converge to a result. The result may be a local optimum, which 

may be not necessarily the best possible outcome, meaning that assessing more than one run 

of the algorithm with randomized starting centroids may give a better outcome. 

Choosing K 

The algorithm described above finds the clusters and data set labels for a particular pre-chosen 

K. To find the number of clusters in the data, the user needs to run the K-means clustering 

algorithm for a range of K values and compare the results. In general, there is no method for 

determining exact value of K, but an accurate estimate can be obtained using some techniques. 

One of the metrics that is commonly used to compare results across different values of K is the 

mean distance between data points and their cluster centroid. Since increasing the number of 

clusters will always reduce the distance to data points, increasing K will always decrease this 

metric, to the extreme of reaching zero when K is the same as the number of data points. Thus, 

this metric cannot be used as the sole target. Instead, mean distance to the centroid as a 

function of K is plotted and the "elbow point," where the rate of decrease sharply shifts, can be 

used to roughly determine K. 
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Statistical results 

Factor analysis 
For the factor analysis, three factors are used (Table 6), a Varimax rotation is applied to the 

loadings and the scores are calculated, once that the model has been identified, using the 

Thompson or regression method. To be able to use the entire set of data, instead of supplying 

the data, the correlation matrix is going to be loaded using a pairwise complete observation. In 

addition, an oblique rotation is going to be applied to test the stability of the model. 

Variable Factor1 Factor2 Factor3 

PATth 0,414 -0,078 0,164 

GDPpc 0,763 0,150 0,430 

PECpc 0,102 -0,497 -0,160 

GREpc 0,376 0,207 0,900 

URDpsk 0,361 0,930 -0,019 

URGpor 0,513 0,109 0,038 

Table 6 Factor loadings 

Statistics Factor1 Factor2 Factor3 

SS loadings 1.299 1.195 1.050 

Proportion Var. 0.217 0.199 0.175 

Cumulative Var. 0.217 0.416 0.591 

Table 7 Explained variance 

The three factors explain the 59,1% of the variance in our model (Table 7). This is enough to 

study the mainstream behavior of the relationships and complies with the necessity of having 

numerical results that can be interpreted in socio-economic-ecological terms.  

The three-factor model resembles a statistical structure (Figure 21) that could be interpreted as 

Economic Growth (Factor 1), Urban Ecology (Factor 2), and Social Cohesion (Factor 3), judging by 

the loadings matrix (Table 6).  

 In Factor 1, Gross Domestic Product (GDPpc), Patents (PATth), and the proportion of 

Urbanizated Area (URGpor) would explain the Economic Growth. 

 In Factor 2, the negative correlation of Primary Energy Consuption (PECpc) and Urban 

Density (URDpsk) reveals that when urban networks are more concentrated and 

connected (i.e. policentric structure) could make more efficient use of energy, which 

would explain the Urban Ecology. 

 And Factor 3 accounts for the correlation between Gross Rate Employment (GREpc) and 

GDPpc, which would explain the Social Cohesion.  

 In the case of Factor 3 (used as proxy of social equality) is interesting to observe a low 

but negative correlation with PECpc (resources consumption), and positive with PATth 

(knowledge economy). This could be the future of an inclusive growth. 
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Figure 21 Exploratory Factor Analysis 

 

Models evaluation 
First, the model I is created using the function that analyze the loadings matrix (Table 8). Then, 

according to the results of the fit function a new model II is made (Table 9), taking into account 

the negative variances or other messages that are later included as residual covariances 

between the observed variables. 

Each row in the tables of the models syntax corresponds to a single parameter. The ‘rhs’, ‘op’ 

and ‘lhs’ columns uniquely define the parameters of the model. All parameters with the ‘=~’ 

operator are factor loadings, whereas all parameters with the ‘~~’ operator are variances or 

covariances (Table 5). By default, the method includes the estimates, standard errors, z value, p 

value, and 95% confidence intervals for all the model parameters. 
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Model I complete observations 

lhs op rhs est se z pvalue ci.lower ci.upper 

Factor1 =~ PATth 0,505 NA NA NA NA NA 

Factor1 =~ GDPpc 0,376 NA NA NA NA NA 

Factor1 =~ URGpor 0,605 NA NA NA NA NA 

Factor1 =~ URDpsk 0,202 NA NA NA NA NA 

Factor2 =~ PECpc 0,905 NA NA NA NA NA 

Factor2 =~ URDpsk -0,453 NA NA NA NA NA 

Factor3 =~ GREpc 0,829 NA NA NA NA NA 

Factor3 =~ GDPpc 0,425 NA NA NA NA NA 

GDPpc ~~ GREpc 0,228 NA NA NA NA NA 

PECpc ~~ GREpc -0,056 NA NA NA NA NA 

URDpsk ~~ GREpc 0,126 NA NA NA NA NA 

GDPpc ~~ URDpsk 0,147 NA NA NA NA NA 

PATth ~~ PATth 0,745 NA NA NA NA NA 

GDPpc ~~ GDPpc 0,499 NA NA NA NA NA 

URGpor ~~ URGpor 0,634 NA NA NA NA NA 

URDpsk ~~ URDpsk 0,696 NA NA NA NA NA 

PECpc ~~ PECpc 0,180 NA NA NA NA NA 

GREpc ~~ GREpc 0,313 NA NA NA NA NA 

Factor1 ~~ Factor1 1 0 NA NA 1 1 

Factor2 ~~ Factor2 1 0 NA NA 1 1 

Factor3 ~~ Factor3 1 0 NA NA 1 1 

Factor1 ~~ Factor2 -0,316 NA NA NA NA NA 

Factor1 ~~ Factor3 0,564 NA NA NA NA NA 

Factor2 ~~ Factor3 -0,298 NA NA NA NA NA 

Table 8 Model I complete observations 
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Model II complete observations 

lhs op rhs est se z pvalue ci.lower ci.upper 

Factor1 =~ PATth 0,505 0,010 52,667 0,000 0,487 0,524 

Factor1 =~ GDPpc 0,273 0,037 7,359 0,000 0,200 0,345 

Factor1 =~ URGpor 0,604 0,011 52,667 0,000 0,582 0,626 

Factor2 =~ PECpc -0,585 0,009 -63,059 0,000 -0,603 -0,567 

Factor2 =~ URDpsk 0,800 0,013 63,059 0,000 0,775 0,824 

Factor3 =~ GDPpc 0,679 0,036 18,643 0,000 0,608 0,750 

Factor3 =~ GREpc 0,925 0,027 34,792 0,000 0,873 0,978 

PATth ~~ PATth 0,745 0,013 57,155 0,000 0,719 0,770 

GDPpc ~~ GDPpc 0,278 0,026 10,667 0,000 0,227 0,329 

URGpor ~~ URGpor 0,635 0,016 38,840 0,000 0,603 0,667 

PECpc ~~ PECpc 0,658 0,014 47,304 0,000 0,631 0,685 

URDpsk ~~ URDpsk 0,361 0,022 16,345 0,000 0,317 0,404 

GREpc ~~ GREpc 0,144 0,050 2,871 0,004 0,046 0,242 

Factor1 ~~ Factor1 1,000 0,000 NA NA 1,000 1,000 

Factor2 ~~ Factor2 1,000 0,000 NA NA 1,000 1,000 

Factor3 ~~ Factor3 1,000 0,000 NA NA 1,000 1,000 

Factor1 ~~ Factor2 0,451 0,014 32,980 0,000 0,424 0,478 

Factor1 ~~ Factor3 0,505 0,021 23,535 0,000 0,463 0,547 

Factor2 ~~ Factor3 0,472 0,013 36,519 0,000 0,446 0,497 

Table 9 Model II complete observations 

 

The Lavaan package allows performing a comparison between the models (Table 10) in terms of 

an ANOVA test that includes several measure standards. Given that we do not use Maximum 

Likelihood Methods the Akaike (AIC) and Bayesian Likelihood is not computed, but we can 

compare the models using the Chisq parameter estimator, which in our case is the ULS. 

ANOVA Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) 

fit2b.p 0 NA NA 2263,468 NA NA NA 

fit2b.c 0 NA NA 533,3426 -730,13 0 1 

fit3X.p 5 NA NA 4396,903 3863,56 5 0 

fit3X.c 5 NA NA 579,2454 -817,66 0 1 

Table 10 Model comparison 

The model I was able to compute the standard errors, which can be a symptom that the model 

is not completely identified. On the other side, the model II was the one that had a better 

performance, is the one that used the complete observations that outperformed the rest in 

terms of ULS, thus, is going to be the model that will be used to calculate the scores. 

In Figure 22, Confirmatory Factor Analysis Pattern Matrix is represented. One direction arrows 

represent loadings (regression coefficients expressing variables in terms of latent factors), and 

double arrows represent implied correlations between factors, with red colored lines 

corresponding to negative coefficients and lines width being proportional to the absolute value. 
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Figure 22 Confirmatory Factor Analysis Pattern Matrix of the complete observation model II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Confirmatory Factor Analysis Structure Matrix of the complete observation model II 



48 
 

 

In Figure 23, Confirmatory Factor Analysis Structure Matrix is represented. Double arrows 

represent correlations, with red coloured lines corresponding to negative coefficients and lines 

width being proportional to the absolute value. The Table 11 shows the numeric values in the 

structure matrix: 

Variables Factor1 Factor2 Factor3 

PATth 0,50 0,23 0,25 

GDPpc 0,62 0,44 0,82 

PECpc -0,26 -0,58 -0,28 

GREpc 0,47 0,44 0,92 

URDpsk 0,36 0,80 -0,38 

URGpor 0,60 0,27 0,30 

Table 11 Structure matrix of the selected model II 

 

Confirmatory factor analysis 
Given the obtained results, the model to be used is the II, which performs better. The Table 12 

shows the correlation matrix of the factor model: 

Variables PATth GDPpc PECpc GREpc URDpsk URGpor 

PATth 1,00 0,31 -0,13 0,24 0,18 0,31 

GDPpc 0,31 1,00 -0,26 0,76 0,35 0,37 

PECpc -0,13 -0,26 0,98 -0,26 -0,47 -0,16 

GREpc 0,24 0,76 -0,26 1,51 0,35 0,28 

URDpsk 0,18 0,35 -0,47 0,35 1,00 0,22 

URGpor 0,31 0,37 -0,16 0,28 0,22 0,51 
Table 12 Inferred correlation matrix of the factor model. 

The model is defined by the following equations for the variables: 

𝑧𝑃𝐴𝑇𝑝𝑐 =  𝑞11𝐹1  +  0𝐹2  +  0𝐹3  +  𝑈1  

𝑧𝐺𝐷𝑃𝑝𝑐 =  𝑞21𝐹1  +  0𝐹2  +  𝑞23𝐹3  + 𝑈2  

𝑧𝑃𝐸𝐶𝑝𝑐 =  0𝐹1  + 𝑞32𝐹2  +  0𝐹3  + 𝑈3  

𝑧𝐺𝑅𝐸𝑝𝑐 =  0𝐹1  +  0𝐹2  +  𝑞43𝐹3  +  𝑈4  

𝑧𝑈𝑅𝐷𝑝𝑠𝑘 =  𝑞51𝐹1  +  𝑞52𝐹2  +  0𝐹3  +  𝑈5  

𝑧𝑈𝑅𝐺𝑝𝑜𝑟 =  𝑞61𝐹1  +  0𝐹2  +  0𝐹3  + 𝑈6 

The notation zGDPpc, and so on, indicates that the observed variables are normalized in this 

analysis. The coefficients 𝑞𝑖𝑗 are the loadings, factors F1, F2 and F3 are the latent common 

factors and 𝑈1, . . . , 𝑈3 are the unique or specific factors. We assume that there exist covariances 

between each pair of latent factors, being specific factors uncorrelated. Common and specific 

factors are uncorrelated, and we impose common factors to be standard. This model is simpler 

than the previous one, and the model assumptions imply the following decomposition:  

𝑅 =  𝑄𝛴𝐹𝑄
𝑡  +  𝛹  
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Where 𝑅 =  (𝑟𝑖𝑗) is the symmetric and positive definite correlation matrix between the 

observed variables (equivalent to the covariance of the normalized observations), Q is the matrix 

containing the loadings and 𝛹 the diagonal matrix containing the specific variances, also called 

residual variances: 

𝑄 =

(

 
 
 

q11 0 0
q21 0 q23
0  q32 0
0 0  q43
0 q52 0
q61 0 0 )

 
 
 
; Σ𝐹 = (

1 𝛼 𝛽
𝛼 1 𝛽
𝛽 𝛾 1

) 

 

𝜓 =

(

 
 
 

ψ11 0 0 0 0 0
0 ψ22 0 0 0 0
0 0 ψ33 0 0 0
0 0 0  ψ44 0 0
0 0 0 0 ψ55 0
0 0 0 0 0 ψ66)

 
 
 

 

Scores calculation 
Once the factor model has been identified, it is going to be used to calculate de scores of the 

observations. According to the factorial model, the Thompson type regression scores (Thomson, 

1951) can be computed as:  

𝐹 =  𝑍𝑅−1𝑄𝛴𝐹 

Where Z is the data frame of normalized data, and the other matrices (observed variables 

correlation, loadings, and factors correlation matrices) are given above. The scores equation 

defining 𝐵 =  𝑅−1𝑄𝛴𝐹, can be rewritten in the following form: 

(
𝐹1
𝐹2
𝐹3

) = 𝐵𝑇

(

 
 
 

𝑍1
𝑍2
𝑍3
𝑍4
𝑍5
𝑍6)

 
 
 

 

Where Z1 = zPATth, Z2 = zGDPpc, Z3 = zPECpc, Z4 = zGREpc, Z5 = zURDpsk and Z6 = zURGpor. 

This formula allows to compute the scores both for the sample observations and for new 

observations. Finally, taking into account that 𝑍 =
𝑋−�̅�

𝑆
 s and renaming 𝐴𝑡  =  𝐵𝑡𝑆−1  where 𝑆−1 

is the diagonal matrix whose diagonal elements are the reciprocal of the standard deviations 1/s 

of the variables, the scores can be written in terms of the original unscaled variables as follows: 

(
𝐹1
𝐹2
𝐹3

) = 𝐴𝑇

(

 
 
 

𝑋1
𝑋2
𝑋3
𝑋4
𝑋5
𝑋6)

 
 
 
− 𝐴𝑇

(

 
 
 

𝑥1̅̅ ̅
𝑥2̅̅ ̅
𝑥3̅̅ ̅
𝑥4̅̅ ̅
𝑥5̅̅ ̅
𝑥6̅̅ ̅)

 
 
 

 

The Table 13 shows the 𝐴𝑡 matrix computed in this case:  
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Factors X1 PATth X2 GDPpc X3 PECpc X4 GREpc X5 URDpsk X6 URGpor 

F1 = Factor1 0,00129 4,00E-5 -0,01981 -0,00163 6,00E-05 0,01481 

F2 = Factor2 0,00075 0 -0,12097 0,00984 0,00056 -0,00206 

F3 = Factor3 -0,00034 3,00E-05 0,00402 0,06453 3,00E-05 0,00207 

Table 13 At matrix 

Finally, the factor scores in terms of the original unscaled variables can be calculated as: 

𝐹1  =  0.00129𝑋1  +  4 × 10
−5𝑋2  − 0.01981𝑋3  − 0.00163𝑋4  +  6 × 10

−5𝑋5  

+  0.01481𝑋6  − 2.17892  

𝐹2  =  7.5 × 10
−4𝑋1  +  0𝑋2  − 0.12097𝑋3  +  0.00984𝑋4  +  5.6 × 10

−4𝑋5  − 0.00206𝑋6  

− 0.2246  

𝐹3  =  −3.4 × 10
−4𝑋1  +  3 × 10

−5𝑋2  +  0.00402𝑋3  +  0.06453𝑋4  +  3 × 10
−5𝑋5  

+  0.00207𝑋6  − 3.73266 

Table 14 and Table 15 show the averaged scores for countries and megaregions respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 Countries averaged scores 

Country Factor1 Factor2 Factor3 

AT 0,419 0,682 0,641 

BE 0,939 0,36 -0,523 

BG -1,205 -0,086 -0,092 

CY -0,383 -0,724 0,441 

CZ -0,019 -0,417 0,559 

DE 1,245 0,858 0,66 

DK 0,816 0,5 1,041 

EE -1,183 -0,674 -0,077 

EL -0,772 -0,696 -1,028 

ES -0,169 -0,284 0,065 

FI -0,062 -1,066 -0,71 

FR 0,603 1,295 0,134 

HU -0,572 0,051 -2,119 

IE 0,3 -0,263 0,424 

IT 0,087 -0,309 -0,656 

LT -1,309 -0,228 -0,347 

LU 1,814 -1,149 2,745 

LV -0,933 0,804 -0,244 

MT 0,456 1,161 -0,452 

NL 1,109 0,157 -0,164 

PL 0,021 0,71 0,088 

PT -0,423 -0,601 0,3 

RO -1,036 0,795 -1,33 

SE 0,338 -0,65 0,547 

SK -0,544 -0,722 -0,376 

UK 0,462 0,499 0,473 
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Megaregion Factor1 Factor2 Factor3 

NMR -1,728 -0,697 -1,456 

VIB -0,589 -0,107 -0,715 

FRG 1,326 0,143 1,356 

AMB 0,594 -0,453 -0,26 

PRA 0,006 -0,305 0,773 

BER 0,413 1,23 0,004 

LIS -0,869 -0,616 -0,496 

MAD 0,311 0,215 0,985 

BAL -0,353 -0,511 -0,292 

PAR 1,57 2,364 1,094 

RMT -0,42 -0,546 -1,558 

LON 0,045 -0,261 0,271 

GLB -0,306 -0,456 0,295 

 

Table 15 Megaregions averaged scores 

Factors in time 
The plot shows us the behavior of the factors in time (1995, 2000, 2005, 2010) at megaregional 

level (Figure 24 to Figure 26). Some interesting patterns can be seen: 

 In general, NUTS 3 not included in a megaregion (NMR) have worst patterns in Economic 

Growth (F1) – Urban Ecology (F2) relationship (Figure 24), comparing to NUTS 3 that 

belong to a megaregion.  

 Three main NUTS 3 megaregional tendencies can be observed in the F1-F2 relationship 

(Figure 24): Frankfurt-Stuttgart (FRG) increases F1; London (LON) increases F2; and Paris 

(PAR) shows high scores of both factors. 

 There is a positive lineal relationship between Economic Growth (F1) – Social Cohesion 

(F3) (Figure 25), with lowest values in no-megaregion NUTS 3 and highest values in 

advanced NUTS 3 megaregions (for example, FRG, AMB and PAR). 

 More interesting is the relationship Urban Ecology (F2) – Social Cohesion (F3) (Figure 

26). There is a tendency to a positive association between both factors, not observed in 

no-megaregion NUTS 3, but clearly observed in some advanced megaregions (like FRG, 

AMB, LON and PAR). 

 The Urban Ecology (F2) – Social Cohesion (F3) relation is especially important because 

demonstrate that it is possible to create employment with lower energy consumption 

in European polycentric urban networks (Figure 26). 
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Figure 24 Factor 1 vs Factor 2, NUTS 3 belonging to a megaregion or not (NMR); 1995-2010 
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Figure 25 Factor 1 vs Factor 3, NUTS 3 belonging to a megaregion or not (NMR); 1995-2010 
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Figure 26 Factor 2 vs Factor 3, NUTS 3 belonging to a megaregion or not (NMR); 1995-2010 
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Cluster analysis 
To determine and visualize the optimal number of clusters, using in this case the K-means 

partition method, the fviz_nbclust function is used. To determine the right number of clusters, 

the K-means algorithm minimize the Total within Sum of squares for an increasing of cluster. 

The number k is between 4 and 6, with no obvious point of break. This consideration also is 

based on previous theoretical interpretation and on the factor analysis results (Figure 27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 Total sum of squares for different values of k 

Megaregions show a decrease in the similarities until the 2005 break, when they reached a 

maximum the agglomeration to start to disperse again in 2010 (Figure 28). The greatest 

difference in the megaregions is presented in 1995, were the difference between them makes 

difficult to stablish homogenous groups. That is because they have characteristics that varies 

from city to city more easily, like the degree of urbanization or the economic development.  

For example, Madrid (MAD), Paris (PAR) and Berlin (BER) appears as a consistent group (from 

2000 to 2010) because are very concentrated megaregions with high urban density. On the other 

side, Frankfurt-Stuttgart (FRG), Amsterdam-Brussels-Antwerp (AMB) and Prague (PRG) conform 

an instable group (2010) characterized by their socioeconomic development. Finally, some 

megaregions change their group over time (like Barcelona-Lyon –BAL), probably as consequence 

of the urban expansion (Figure 4) or the economic crisis. 
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Figure 28 Dendrogram of megaregions clustering; 1995-2010 
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Model construction 

Conceptual approach 
When GDP was introduced seven decades ago, it was a relevant notice of progress: increased 

economic activity was recognized with providing employment, income and amenities to reduce 

social conflict and prevent another world war. However, the world today is very different from 

the one faced by the leaders who met to plan the post-war economy in 1944 (see introduction).  

The emphasis on GDP in developed countries now fuels social and environmental instability. It 

also blinds developing countries to possibilities for more sustainable models of urban progress. 

Rising economic activity has depleted natural resources. Much of the generated wealth has been 

unequally distributed, leading to a host of social problems (Wilkinson and Pickett, 2009). 

The United Nations General Assembly –World Summit Outcome (2005 resolution) has identified 

economic growth, social cohesion and urban ecology as interdependent and mutually 

reinforcing pillars of sustainability. While such as the Club of Rome (1970 report) highlighted the 

unsustainability of current rates of resource depletion. 

Elkington (1999) created the term ’triple bottom line’ to represent this emerging focus on the 

three factors of social, environmental and economic added value. This concept has been 

modified over time and is now often summarized as “people, planet and profit”. 

More recently, the World Confederation of Productivity Science (WCPS; http://www.wcps.info) 

has addressed these three factors, suggesting that had to be viewed holistically as a business 

issue, not as an ’add-on’ issue of corporate social responsibility. The current recognition of the 

impact of climate change clearly demonstrates the complexity of the interaction between social, 

environmental and economic factors in global urban systems.  

The main goal of this study is to create integrated indices of urban network sustainable progress 

according to different conceptual scenarios, able to measure the performance and the dynamics 

of urban systems at regional and megaregional scales, based on official (Eurostat) and satellite 

(NASA) data, and given standardized socio-economic-ecological factors. 

The absolute or relative measures of these factors would be helpful in terms of: understanding 

and diagnosing current urban systems’ dynamics; comparing current urban networks 

performance and long-term behaviors; driving efforts to improve performance. It therefore 

sought to identify ways in which urban sustainable progress can be measured or assessed.  

There are numerous measures for the individual components of sustainable progress but there 

seems to be no consensus on a measurement or assessment model scenarios representing 

integrated the combined factors. Any measurement or assessment regime for urban sustainable 

progress should: provide information in a timely fashion; tailored view so that subsequent 

improvement actions are not sub-optimal; present information clearly and concisely.  

The methodological development is based on the discussion that arose from that presentation 

and is an attempt to take forward the concepts and propose simple and up to date, but robust 

and rigorous, urban network sustainable progress indices at regional and megaregional scales. 

Methodological development 
The OECD (2008) describes how a composite indicator is formed when individual indicators are 

compiled into a single index on the basis of an underlying model. The idea is that the composite 
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index captures multi-dimensional concepts that cannot be handled by a single indicator and is 

therefore relevant combining separate aspects of country performance (i.e. inclusive growth). 

The OECD suggests a ten-step guide to building a composite index: theoretical framework, data 

selection, imputation of missing data, multivariate analysis, normalization, weighting and 

aggregation, robustness and sensitivity analysis, back to the detail, links to other indicators, and 

visualization of the results. In general, these ten steps will be used to carry forward our 

discussion of the construction of the urban network sustainable progress indices. 

According to the previously performed multivariate analysis, that have under covered the 

hidden relationships that govern the observable variables, the goal is now to represent these 

relationships in a way that they can be used to represent the data in a more integrated way. This 

means that the indices must be able to be used in new observations and convey a more meaning 

than the one that can be inferred from a factor analysis and from the scores. 

After all, the indices must have a meaning that serves the interest in more socio-economic-

ecological way, maintaining the mathematical tools as a support for these statements. 

The idea of the urban network sustainable progress indices can be summarized in the next 

statement: How likely is to find an urban region with the same underlying relationships that are 

reflected on the observable variables? This statement enables us to use a known probability 

distribution function to express the indices according to different conceptual scenarios.  

Scores distribution 
In statistics, a power transform is a family of functions that are applied to create a monotonic 

transformation of data using power functions. This is a technique used to stabilize variance, 

make the data more normal distribution-like, and improve the validity of measures of 

association –such as the Pearson correlation and other data stabilization procedures. 

A translation to get positive scores is applied to each one of the factors (F1, F2 and F3), followed 

by a Box-Cox transformation (Box and Cox, 1964) in order to approximate better to the Gaussian, 

gives us the transformed scores 𝑡𝐹𝑗, for j = 1,2,3: 

𝑡𝐹𝑗 =
𝐹
𝑗

𝜆𝑗  − 1

 𝜆𝑗
, 

𝜆1  ≈ −2.019; 𝜆2 ≈ −4.999; 𝜆3  ≈ −4.346 

The value of the 𝜆𝑗 is obtained by function powertransform in the library car.  

The marginal distributions of the transformed scores seem to adjust better to the Laplace or 

double exponential distribution than to the Gaussian law, as it can be seen in Figure 29. Recall 

that the Laplace density and distribution functions are, respectively: 

𝑓(𝑥) =
1

2𝛽
. 𝑒𝑥𝑝(−

|𝑥 − 𝑚|

𝛽
  )  

𝛷(𝑥) =
1

2
 +
1

2
𝑠𝑔𝑛(𝑥 − 𝑚)(1 − 𝑒𝑥𝑝(−

|𝑥 − 𝑚|

𝛽
  )) 

The Laplace density is represented over the histograms of 𝑡𝐹𝑗 in the right-hand side of the 

pictures over the histogram of the transformed scores in Figure 30. Given a sample 𝑦1, . . . , 𝑦𝑛, 
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the MLE of the parameters m and 𝛽 are the sample median (50th-percentile) and the mean 

absolute deviations from the sample median respectively:  

�̂�  =  𝐶50  

�̂�  =
1

𝑛
 ∑  |𝑦𝑖 − �̂�|

𝑛

𝑖=1

  

For each transformed factor 𝑡𝐹𝑗, the correspondant Laplace distribution function 𝛷𝑗 is 

estimated and compared to the empirical distribution function of the same transformed scores 

(Figure 30). This can be seen in the Figure 29, pictures on the right-hand side. On the left-hand 

side and the center, the pictures show that Gaussian does not give a good fit to 𝐹𝑗, fits better to 

𝑡𝐹𝑗, and Laplace give rise to the best fit in all cases. 

From top to bottom, for j = 1,2,3, in each row of the graph we show the histogram of factor Fj 

(left) and 𝑡𝐹𝑗 (center) jointly with Gaussian density (Figure 29). On the right, the best fit 

correspond to the Laplace density adjusted to the histogram of 𝑡𝐹𝑗. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Cumulative Laplace distribution function (black line) and empirical distribution function (gray 
line) for the transformed factors 
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Figure 30 Transformed scores 

 

Indicators calculation 
We obtain the indicators for every NUTS 3 region. The head and the tail of the sorted data in 

decreasing order with respect to F1 are shown in Table 16 and Table 17. Recall that the same 

order is equivalently defined by either F1, tF1 or the indicator I1 (Economic Growth). 

 

NUTS3 Year COUn MGAn PATth GDPpc PECpc GREpc URDpsk URGpor I1 

UKI11 2008 UK LON 155,5425 156173 0,42256 161,0082 10265,74 100 0,998973 

UKI11 2007 UK LON 166,4727 152333,6 0,390922 168,6853 10185,19 100 0,99888 

UKI11 2006 UK LON 186,696 144721,5 0,434152 152,3477 10091,67 100 0,998702 

UKI11 2009 UK LON 169,8498 144366,1 0,355486 151,6699 10355,56 100 0,998688 

UKI11 2005 UK LON 175,6068 141928,8 0,43169 147,0692 9956,481 100 0,998601 

UKI11 2010 UK LON 54,06051 145101,7 0,385424 154,7227 10466,67 100 0,998588 

UKI11 2004 UK LON 186,5008 132256,2 0,414322 149,0575 9787,963 100 0,998228 

UKI11 2003 UK LON 167,8657 128314,6 0,401109 143,1429 9652,778 100 0,99801 

UKI11 2002 UK LON 140,5025 125890,6 0,436448 143,6821 9544,444 100 0,997816 

UKI11 2001 UK LON 187,8776 123819,3 0,416944 136,5443 9379,63 100 0,99779 

Table 16 Best performing NUTS3 regions 
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NUTS3 Year COUn MGAn PATth GDPpc PECpc GREpc URDpsk URGpor I1 

BG311 2001 BG NMR 0,832702 4360,333 1,543374 29,10123 494,7566 8,803165 0,012716 

BG311 2006 BG NMR 8,598452 5193,465 1,969058 33,53478 642,5414 5,967689 0,012649 

LT007 2002 LT NMR 7,473842 4977,578 1,56212 41,32506 390,0875 7,883245 0,01255 

LV005 2006 LV NMR 2,799552 5688,69 1,571649 39,31342 453,2995 5,488612 0,012385 

EE008 2002 EE NMR 0,284657 6726,445 3,799642 36,28638 371,3531 5,701543 0,01232 

LV005 2005 LV NMR 2,761668 5144,988 1,605885 35,46318 386,4461 6,526433 0,01219 

EE008 1995 EE NMR 5,409792 3657,019 3,968758 40,03404 150,7749 14,77821 0,011935 

LV005 2000 LV NMR 16,37972 3433,186 1,60531 30,69662 291,4958 9,173226 0,011809 

FI1D7 1999 FI NMR 42,96675 7422,67 6,346453 31,63193 68,11847 2,814139 0,011778 

FI1D4 1996 FI NMR 10,54852 7000,642 10,03367 30,11119 41,12798 9,331984 0,010557 

Table 17 Worst performing NUTS3 regions 

The same proceeding is applied to the factor’s scores F2 and F3 in order to obtain the indicators 

I2 (Urban Ecology) and I3 (Social Cohesion). 

 

Plots of the regions and its indicators values 
The next plots show each region (NUTS 3) in a color scale according to the indicators in 

consideration: I1 (Economic Growth, Figure 31), I2 (Urban Ecology, Figure 32), and I3 (Social 

cohesion, Figure 33). The regions with no assigned value are not included in the analysis, because 

the information is missing (white color in the maps). 

It must be taken into account that despite the fact that only real information was used to analyze 

the relationships between the variables and to create the indicators, in the plots a small amount 

of imputation is made, according to the imputation method before mentioned. 

It is important to note that the three indicators measures the urban network performance (for 

instance, there could be a region with a great percentage of open spaces and environmental 

quality, but with inefficient urban ecological functionality –like disperse urbanizations). 

In general, the maps represent consistently the economic (Figure 31), ecological (Figure 32) and 

social (Figure 33) urban system dynamics of European NUTS 3 regions from 1995 to 2010. These 

indicators will be used to calculate the integrated index of urban network sustainability progress 

according to different scenarios (using indicator adjustment –with penalization).  
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Figure 31 Indicator I –Economic Growth at NUTS3 level (1995-2010) 
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Figure 32 Indicator II –Urban Ecology at NUTS3 level (1995-2010) 
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Figure 33 Indicator III –Social Cohesion at NUTS3 level (1995-2010) 
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Adjustments: penalization 
Consider a latent factor, denoted 𝐹1 and provided by some factorial method (factor analysis, 

structural equations, among others). 𝐹1 is a random variable satisfying the assumptions of the 

undelaying model. The corresponding scores {𝑓11, . . . , 𝑓1𝑛} can be seen as observed values of 

this random variable. The natural order in R, defines an obvious index on the scores, giving rise 

to a total ordering between any pair of cases, in this way:  

𝑖 ≺  𝑗 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑓1𝑖 ≤ 𝑓1𝑗 (1)  

Assuming that scores indicate best performance of the case as greater their value is, the 

downside is that are unbounded, and their isolated value cannot be interpreted. To circumvent 

this problem, some monotonic function 𝛷: 𝑅 →  [0,1] (or to another bounded interval instead 

of the unitary one) should be applied to 𝐹1. We propose using the transformation given by the 

distribution function 𝛷1 of the random variable 𝐹1. As the distribution function is increasing, we 

have: 

 𝑖 ≺  𝑗 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑓1𝑖 ≤ 𝑓1𝑗 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝛷1( 𝑓1𝑖)  ≤  𝛷1(𝑓1𝑗). (2)  

This function is intrinsic to the observations and the nature of the variable. The value 𝛷1(𝑓1𝑗) is 

the cumulative percentage of cases whose scores are lower or equal to f1i. In this way, it is the 

percentile position of the case, according to the scores distribution. 

Definition 1. Given any random variable 𝐹1  taking real values, consider the index 𝐼1 defined by 

the distribution function 𝛷1 of 𝐹1 ∶  𝐼1 ∶ =  𝛷1(𝐹1 ) (3). This index takes values between 0 and 

1, and preserves the order given by 𝐹1. Moreover, as close to 1 as better the case position is and, 

conversely, values near 0 indicate bad positioning. Index 𝐼1 is a random variable following a 

uniform distribution in the unit interval. If 𝛷 is not known but it belongs to some parametric 

family, parameters can be estimated as 𝛷1 from the scores, and the index defined by means of 

this estimator. If any parametric family can not be assumed, the empirical distribution function 

(denoted by 𝛷1
𝑛) could be used instead of the actual distribution. Habitually, factorial models 

involve more than one factor. Consider two factors 𝐹1, 𝐹2 jointly evaluated on the same cases. 

The goal could be indexing the cases by some kind of ordering taking into account both 𝐼1 and 

𝐼2, in a way that prioritizes the first index 𝐼1, but penalizes negatively cases showing low values 

in 𝐼3, conversely, and penalizes positively taking higher values on the second index. In this way, 

we suggest a new kind of index depending on a weight parameter 𝑤 ∈  [0,1/2] expressing the 

penalty degree. 

Definition 2. Given any pair of random variables 𝐹1 and 𝐹2 taking real values, consider the index 

Iw 12 defined by the distribution functions 𝛷1, 𝛷2 and scalar 𝑤 ∈  [0, 1 2]: 

 𝐼12
𝑤  =  𝛷1(𝐹1) − 𝑤(𝛷1(𝐹1) − 𝛷2(𝐹2))  =  (1 − 𝑤)𝛷1(𝐹1)  +  𝑤𝛷2(𝐹2)  =  (1 − 𝑤)𝐼1  +  𝑤𝐼2  

Remark 1. Notice that the right-hand side is a convex combination of 𝐼1 =  𝛷(𝐹1) and 𝐼2 =

 𝛷(𝐹2) and weights 𝑤 ∈  [0,1] can be used. The constraint 𝑤 ≤  1/2 implies (1 − 𝑤)  >  𝑤 

and expresses the idea that 𝐹1 is the primer factor to define the ordering and 𝐹2 plays a 

secondary role, the role being partially if 𝑤 =  1/2. Some immediate relations can be easely 

shown. 

Properties.  

1. For any 𝑤 ∈  [0,1], 𝐼12
𝑤 ∈  [0,1].  

2. For any 𝑤 ∈  [0,1/2], 𝑖𝑓 𝐹2  ≤  𝐹1, 𝑡ℎ𝑒𝑛 𝐼12
𝑤  ≤  𝐼1.  
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3. For any 𝑤 ∈  [0,1/2], 𝑖𝑓 𝐹1  ≤  𝐹2, 𝑡ℎ𝑒𝑛 𝐼12
𝑤  ≥  𝐼1. 

In a more general way, more than two factors can be combined to define a weighted bounded 

index, taking values in [0,1]. 

Definition 3. Given random variables 𝐹1, . . . , 𝐹𝑘  taking real values, consider the index Iw 1...k 

defined by the distribution functions 𝛷1, . . . , 𝛷𝑘 and scalars 𝑤 =  (𝑤1, . . . , 𝑤𝑘) sorted in 

increasing order 𝑤1  ≥  𝑤2  ≥ ···≥  𝑤𝑘 and satisfying ∑ 𝑤𝑗
𝑘
𝑗 =1 = 1 :  

𝐼1…𝑘
𝑤 : =  ∑ 𝑤𝑗𝛷𝑗(𝐹𝑗)

𝑘

𝑗 =1

 =   ∑ 𝑤𝑗𝐼𝑗

𝑘

𝑗 =1

 (5)  

Remark 2. Notice that the index in (4) is a particular case of this general index, with 𝑘 =  2, 

𝑤1 =  1 − 𝑤 and 𝑤2 =  𝑤. Another example is given by 

𝐼123
𝑤 : = 1/3(𝛷1(𝐹1)  + 𝛷2(𝐹2)  + 𝛷3(𝐹3))  = 1/3(𝐼1  + 𝐼2  +  𝐼3). (6) 

Illustration. To better understand the use of indices in (3) and (4), two standard Gaussian random 

samples of size 100 with some amount of correlation (ρ = 0.3) are generated (see Table 18). We 

divide the sample into two subsamples, the first one characterized by cases satisfying F2 < F1 

and the second one composed by cases satisfying F1 ≤ F2. Ordered values of both subsamples 

are shown in Table 19. 

 

F1 F2 

0.90 0.97 

0.31 -1.00 

-0.36 1.15 

-0.12 0.45 

… …. 
Table 18 Header of a b-variate standard Gaussian sample of size 100 and correlation 0.3 

 

F1 F2 F1 F2 

-1.82 - 0.84 -0.89 -1.87 

-1.81 -1.73 -0.65 -1.82 

-1.81 -0.39 -0.63 -0.67 

-1.53 -1.16 -0.62 -2.75 

… …. … …. 
Table 19 Header of subsample F1 ≤ F2 on the left-hand side and subsample F1 ≥ F1 on the right. Cases are 
sorted by F1 in increasing order. 

 

In the top left corner of Figure 34, we represent the transformation on 𝐹1 giving rise to index 𝐼1, 

and left to right, top to bottom we show the effect of penalizing cases using index Iw 12, for 

weights w = 0.1 to w = 0.5, by 0.1. In Figure 35, the same indices are shown together with the 

two subsamples behavior: the red points corresponding to cases with F2 ≤ F1 are negatively 

penalized, and the blue points to cases F2 > F1 and are positively penalized. In both figures, we 

appreciate clearly the differences between taking a low weight w = 0.1 on the top-left and the 

highest weight w = 0.5 on the dawn-right. 
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Figure 34 Effect of different values of penalization in F1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Effect highlighted values that increase (in blue) and that decrease (in red) 
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Scenarios definition 
According to different criteria on what means “urban sustainable progress”, four conceptual 

scenarios (Sn) using the three complementary indicators (I1 –Economic Growth, I2 –Urban 

Ecology, I3 –Social Cohesion) are modelled:  

 S1 Economic Development (I1, penalizing very low values of I2 and I3) 

 S2 Social Sustainability (I3, without I1 and penalizing low values of I2) 

 S3 Environmental Sustainability (I2, without I1 and penalizing low values of I3) 

 S4 Inclusive Growth (S4.1: balance in I1, I2 and I3; S4.2: penalizes unbalance) 

For the four suggested scenarios, several penalizations are used (Table 20). It is important to 

note that in all the scenarios the weights can be modified according to the user criteria. 

S1 Economic Development S2 Social Sustainability 

I1 Economic Growth w1 = 0.8 I1 Economic Growth w1 = 0 

I2 Urban Ecology w2 = 0.1 I2 Urban Ecology w2 = 0.2 

I3 Social Cohesion w3 = 0.1 I3 Social Cohesion w3 = 0.8 

S3 Environmental Sustainability S4 Inclusive Growth 

I1 Economic Growth w1 = 0 I1 Economic Growth w1 = 1/3 

I2 Urban Ecology w2 = 0.8 I2 Urban Ecology w2 = 1/3 

I3 Social Cohesion w3 = 0.2 I3 Social Cohesion w3 = 1/3 

Table 20 Scenarios of urban network sustainable progress 

Scenario S1 – Economic Development 
The more mainstream of all, this is the scenario of neoclassical economic theory, were the 

economic growth must be maximum and practically unrestricted by other factors. To be able to 

visualize the regions that comply with this standard, the compound index 𝑆1 has its weights: 

𝑤1 = 0.8, 𝑤2 = 0.1, 𝑤3 = 0.1, set to maximize the economic factor (without neglecting the 

others).  

𝑆1 = 𝑤1𝐼1 +𝑤2𝐼2 +𝑤3𝐼3; 

𝑤1 +𝑤2 +𝑤3 = 1 

Scenario S2 – Social Sustainability 
In this case, we maximize the social equality factor. The economic factor does not play explicitly 

any role (however, could be an important variable in the expression of the partial indicators). 

Consequently, the index take into account the indicators I2 and I3 in the following way: 

𝑆2 = 𝑤2𝐼2 +𝑤3𝐼3; 

𝑤2 +𝑤3 = 1 

The way that this scenario is constructed is by set 𝑤2 = 0.2 and 𝑤3 = 0.8. 
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Scenario S3 – Environmental Sustainability 
In this case, we maximize the urban ecology factor. The economic factor does not play explicitly 

any role (only as a variable in the expression of the other indicators). Accordingly, the index take 

into account the indicators I2 and I3: 

𝑆3 = 𝑤2𝐼2 +𝑤3𝐼3; 

𝑤2 +𝑤3 = 1 

This scenario is constructed by set 𝑤2 = 0.8 and 𝑤3 = 0.2. 

Scenario S4 – Inclusive Growth 
In this scenario are the regions that are over the average in all three indicators I1, I2 and I3. We 

propose two indices: 𝑆4.1 (inclusive equal weigh), and 𝑆4.2 (inclusive and balanced): 

𝑆4.1 is an inclusive equal weigh index: 

  𝑆4.1 =
1

3
𝐼1 +

1

3
𝐼2 +

1

3
𝐼3; 

𝑤1 =
1

3
, 𝑤2 =

1

3
, w3 =

1

3
 

𝑆4.2 is an inclusive and also balanced index, that penalizes the unbalance between I1, I2 and I3: 

 I = (
1

3
+ 2𝛽)Min{𝐼1, 𝐼2 , 𝐼3} +

1

3
Med{𝐼1, 𝐼2 , 𝐼3} + (

1

3
− 2𝛽)Max{𝐼1, 𝐼2 , 𝐼3} 

𝛽 ≤
1

6
.  In particular, 𝑆4.2 corresponds to 𝛽 = 

1

12
, therefore: 

𝑆4.2 =
1

2
Min{𝐼1, 𝐼2 , 𝐼3} +

1

3
Med{𝐼1, I2 , 𝐼3} +

1

6
Max{𝐼1, 𝐼2 , 𝐼3} 
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Model results 

Territorial units at regional scale 
The next plots show each region (NUTS 3) in a color scale according to the urban network 

sustainable progress conceptual scenario in consideration: S1 (Economic Development; Figure 

36), S2 (Social Sustainability; Figure 37), S3 (Environmental Sustainability; Figure 38), S4.1 

(Inclusive Growth –equal weigh; Figure 39), S4.2 (Inclusive Growth –balanced; Figure 40). The 

regions with no assigned value (white color in the maps) are not included in the analysis. 

In general, the maps represent consistently the economic development (Figure 36), the social 

sustainability (Figure 37) and the environmental sustainability (Figure 38) of the urban network 

dynamics in the European NUTS 3 regions from 1995 to 2010. The first two indices (S1 and S2) 

clearly improve over time (S2 decreases in the last period probably as consequence of the 

financial crisis), but this trend is not evident for the third index (S3). European regions seem to 

advance more in economic terms than in socio-environmental ones. 

More interesting are the behavior of the inclusive growth indices –in the equal weigh version 

(Figure 39) and the balanced version (Figure 40). Both approaches reflect the regions with more 

equilibrated sustainable progress (in social, ecological and economic terms), and the resilience 

of urban networks (for instance, against perturbations like the financial crisis) in comparison 

with less urbanized regions. We will analyze in more detail these indices in the next section.  
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Figure 36 Scenario S1 –Economic Development at NUTS3 level (1995-2010) 
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Figure 37 Scenario S2 –Social Sustainability at NUTS3 level (1995-2010) 
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Figure 38 Scenario S3 –Environmental Sustainability at NUTS3 level (1995-2010) 
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Figure 39 Scenario S4.1 –Inclusive Growth (equal weigh) at NUTS3 level (1995-2010) 
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Figure 40 Scenario S4.2 –Inclusive Growth (balanced) at NUTS3 level (1995-2010) 
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Urban networks at megaregional scale 
The application of the indicators I1 –Economic Growth, I2 –Urban Ecology, and I3 –Social Cohesion 

at megaregional level (Table 21) in the period of analysis (1995-2010), show higher economic 

values in Paris (PAR; from I1 = 0,76 to I1 = 0,89), Frankfurt-Stuttgart (FRG; from I1 = 0,24 to I1 = 

0,85) and Amsterdam-Brussels-Antwerp (AMB; from I1 = 0,54 to I1 = 0,76). The results also show 

better ecological behavior in Berlin (BER; I2 = 0,89), Madrid (MAD; I2 = 0,84) and Paris (PAR; I2 = 

0,82), mainly due to their urban density; and higher social cohesion in FRG (I3 = 0,89) and PAR (I3 

= 0,87). No-megaregions (NMR) present the lowest values in the three indicators of urban 

sustainability (I1 = 0,05; I2 = 0,34; I3 = 0,02).  

In 2010, Barcelona-Lyon (BAL) was the 8th megaregion in economic growth (I1 = 0,42), the 9th 

megaregion in urban ecology (I2 = 0,65), and the 11th megaregion in social cohesion (I3 = 0,58) –

only NMR and Lisbon (LIS; I3 = 0,53) have lower values of this indicator (Table 21). 

The scenarios S1 –Economic Development, S2 –Social Sustainability, and S3 –Environmental 

Sustainability at megaregional level (Table 22) confirm a general values increase in the period of 

analysis (1995-2010). In 2010, the results show higher economic development and social 

cohesion in PAR (S1 = 0,88; S2 = 0,86) and FRG (S1 = 0,85; S2 = 0,87); and more environmental 

sustainability in BER (S3 = 0,87), MAD (S3 = 0,84) and PAR (S3 = 0,83). No-megaregions (NMR) 

show the lowest values in economic development and social sustainability (S1 = 0,17; S2 = 0,38), 

but LIS the lowest value in environmental sustainability (S3 = 0,49).  

BAL is the 9th megaregion in economic development (S1 = 0,46), the 11th megaregion in social 

sustainability (S2 = 0,59), and the 10th in environmental sustainability (S3 = 0,63). The scenarios 

calculation (Table 22) include the penalization of different factors (as described in Table 20) and, 

in our opinion, are more precise measures than the single indicators. 

The scenarios S4.1 –Inclusive Growth (equal weigh), and S4.2 –Inclusive Growth (balanced) 

calculated at megaregional level (Table 23) in the period of analysis (1995-2010), show higher 

values in the megaregions PAR (S4.1 = 0,86; S4.2 = 0,85) and FRG (S4.1 = 0,84; S4.2 = 0,82); and lower 

values in no-megaregions –NMR (S4.1 = 0,33; S4.2 = 0,26). There is also a general increase of the 

scenarios values overtime.  

In 2010, BAL is the 10th (S4.1 = 0,55) or 9th (S4.2 = 0,51) megaregion in terms of inclusive growth 

(coming from S4.1 = 0,34 and S4.2 = 0,27 in 1995). Although S4.1 and S4.2 present similar results 

(lower values in S4.2 –due to the fact that in this scenario the imbalance is penalized) (Table 23), 

we consider S4.2 as the better approximation to the “urban network sustainable progress”, 

according to the principle of “inclusive growth”, that is de development of urban systems 

towards social equality, ecological efficiency and economic competiveness.  
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Table 21 Indicators I1 –Economic Growth, I2 –Urban Ecology, and I3 –Social Cohesion at megaregional level 
(1995-2010)  

 

Year Identification 1 I1 Identification 2 I2 Identification 3 I3 

1995 

NMR 1995 0.0480 NMR 1995 0.3392 NMR 1995 0.0186 

VIB 1995 0.1359 VIB 1995 0.6180 VIB 1995 0.3317 

FRG 1995 0.2368 FRG 1995 0.4063 FRG 1995 0.2969 

AMB 1995 0.5416 AMB 1995 0.2068 AMB 1995 0.0075 

PRA 1995 0.3267 PRA 1995 0.5539 PRA 1995 0.8172 

LIS 1995 0.2168 LIS 1995 0.4530 LIS 1995 0.1485 

MAD 1995 0.4525 MAD 1995 0.8269 MAD 1995 0.2733 

BAL 1995 0.2661 BAL 1995 0.5573 BAL 1995 0.1843 

PAR 1995 0.7643 PAR 1995 0.8448 PAR 1995 0.6494 

LON 1995 0.4091 LON 1995 0.5249 LON 1995 0.4611 

GLB 1995 0.1447 GLB 1995 0.5859 GLB 1995 0.4552 

2000 

NMR 2000 0.0798 NMR 2000 0.4798 NMR 2000 0.2050 

VIB 2000 0.3076 VIB 2000 0.4675 VIB 2000 0.1272 

FRG 2000 0.8535 FRG 2000 0.8387 FRG 2000 0.8360 

AMB 2000 0.7430 AMB 2000 0.6368 AMB 2000 0.4413 

PRA 2000 0.5293 PRA 2000 0.6076 PRA 2000 0.7796 

BER 2000 0.5253 BER 2000 0.9246 BER 2000 0.6960 

LIS 2000 0.2381 LIS 2000 0.4471 LIS 2000 0.3506 

MAD 2000 0.6926 MAD 2000 0.8592 MAD 2000 0.8025 

BAL 2000 0.4419 BAL 2000 0.6067 BAL 2000 0.5445 

PAR 2000 0.8756 PAR 2000 0.8760 PAR 2000 0.8528 

RMT 2000 0.5566 RMT 2000 0.6385 RMT 2000 0.5140 

LON 2000 0.6042 LON 2000 0.5724 LON 2000 0.6791 

GLB 2000 0.2168 GLB 2000 0.5573 GLB 2000 0.5652 

2005 

NMR 2005 0.0940 NMR 2005 0.5176 NMR 2005 0.2705 

VIB 2005 0.3871 VIB 2005 0.5671 VIB 2005 0.2501 

FRG 2005 0.8937 FRG 2005 0.8238 FRG 2005 0.8476 

AMB 2005 0.7679 AMB 2005 0.7015 AMB 2005 0.7491 

PRA 2005 0.6029 PRA 2005 0.6038 PRA 2005 0.7933 

BER 2005 0.3752 BER 2005 0.8784 BER 2005 0.5515 

LIS 2005 0.2911 LIS 2005 0.4687 LIS 2005 0.5622 

MAD 2005 0.4337 MAD 2005 0.8368 MAD 2005 0.8617 

BAL 2005 0.5042 BAL 2005 0.6545 BAL 2005 0.6599 

PAR 2005 0.8585 PAR 2005 0.8381 PAR 2005 0.8344 

RMT 2005 0.5870 RMT 2005 0.6487 RMT 2005 0.6050 

LON 2005 0.5409 LON 2005 0.6593 LON 2005 0.7170 

GLB 2005 0.2937 GLB 2005 0.6453 GLB 2005 0.7387 

2010 

NMR 2010 0.1045 NMR 2010 0.5449 NMR 2010 0.3478 

VIB 2010 0.3244 VIB 2010 0.6960 VIB 2010 0.6626 

FRG 2010 0.8507 FRG 2010 0.7729 FRG 2010 0.8882 

AMB 2010 0.7584 AMB 2010 0.6838 AMB 2010 0.8124 

PRA 2010 0.5983 PRA 2010 0.5714 PRA 2010 0.8056 

BER 2010 0.4419 BER 2010 0.8936 BER 2010 0.7534 

LIS 2010 0.3864 LIS 2010 0.4848 LIS 2010 0.5324 

MAD 2010 0.4859 MAD 2010 0.8445 MAD 2010 0.8304 

BAL 2010 0.4162 BAL 2010 0.6470 BAL 2010 0.5783 

PAR 2010 0.8868 PAR 2010 0.8206 PAR 2010 0.8710 

RMT 2010 0.4933 RMT 2010 0.6932 RMT 2010 0.5977 

LON 2010 0.4119 LON 2010 0.6585 LON 2010 0.6397 

GLB 2010 0.2312 GLB 2010 0.6462 GLB 2010 0.6761 
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Table 22 Scenarios S1 –Economic Development, S2 –Social Sustainability, and S3 –Environmental 
Sustainability at megaregional level (1995-2010)  

  

Year Identification 1 S1 Identification 2 S2 Identification 3 S3 

1995 

NMR 1995 0.0742 NMR 1995 0.0827 NMR 1995 0.2751 

VIB 1995 0.2037 VIB 1995 0.3890 VIB 1995 0.5607 

FRG 1995 0.2598 FRG 1995 0.3188 FRG 1995 0.3844 

AMB 1995 0.4547 AMB 1995 0.0474 AMB 1995 0.1670 

PRA 1995 0.3985 PRA 1995 0.7645 PRA 1995 0.6066 

LIS 1995 0.2336 LIS 1995 0.2094 LIS 1995 0.3921 

MAD 1995 0.4721 MAD 1995 0.3841 MAD 1995 0.7162 

BAL 1995 0.2870 BAL 1995 0.2589 BAL 1995 0.4827 

PAR 1995 0.7609 PAR 1995 0.6885 PAR 1995 0.8058 

LON 1995 0.4259 LON 1995 0.4738 LON 1995 0.5121 

GLB 1995 0.2198 GLB 1995 0.4814 GLB 1995 0.5598 

2000 

NMR 2000 0.1323 NMR 2000 0.2600 NMR 2000 0.4248 

VIB 2000 0.3056 VIB 2000 0.1953 VIB 2000 0.3994 

FRG 2000 0.8503 FRG 2000 0.8366 FRG 2000 0.8382 

AMB 2000 0.7022 AMB 2000 0.4804 AMB 2000 0.5977 

PRA 2000 0.5621 PRA 2000 0.7452 PRA 2000 0.6420 

BER 2000 0.5823 BER 2000 0.7417 BER 2000 0.8789 

LIS 2000 0.2703 LIS 2000 0.3699 LIS 2000 0.4278 

MAD 2000 0.7203 MAD 2000 0.8138 MAD 2000 0.8478 

BAL 2000 0.4686 BAL 2000 0.5569 BAL 2000 0.5942 

PAR 2000 0.8734 PAR 2000 0.8575 PAR 2000 0.8713 

RMT 2000 0.5605 RMT 2000 0.5389 RMT 2000 0.6136 

LON 2000 0.6085 LON 2000 0.6578 LON 2000 0.5938 

GLB 2000 0.2857 GLB 2000 0.5636 GLB 2000 0.5588 

2005 

NMR 2005 0.1540 NMR 2005 0.3199 NMR 2005 0.4682 

VIB 2005 0.3914 VIB 2005 0.3135 VIB 2005 0.5037 

FRG 2005 0.8821 FRG 2005 0.8429 FRG 2005 0.8285 

AMB 2005 0.7594 AMB 2005 0.7396 AMB 2005 0.7110 

PRA 2005 0.6220 PRA 2005 0.7554 PRA 2005 0.6417 

BER 2005 0.4432 BER 2005 0.6169 BER 2005 0.8130 

LIS 2005 0.3360 LIS 2005 0.5435 LIS 2005 0.4874 

MAD 2005 0.5168 MAD 2005 0.8567 MAD 2005 0.8418 

BAL 2005 0.5348 BAL 2005 0.6588 BAL 2005 0.6555 

PAR 2005 0.8541 PAR 2005 0.8351 PAR 2005 0.8374 

RMT 2005 0.5950 RMT 2005 0.6137 RMT 2005 0.6399 

LON 2005 0.5703 LON 2005 0.7054 LON 2005 0.6708 

GLB 2005 0.3734 GLB 2005 0.7200 GLB 2005 0.6640 

2010 

NMR 2010 0.1729 NMR 2010 0.3872 NMR 2010 0.5055 

VIB 2010 0.3954 VIB 2010 0.6692 VIB 2010 0.6893 

FRG 2010 0.8467 FRG 2010 0.8651 FRG 2010 0.7959 

AMB 2010 0.7564 AMB 2010 0.7867 AMB 2010 0.7095 

PRA 2010 0.6164 PRA 2010 0.7588 PRA 2010 0.6182 

BER 2010 0.5182 BER 2010 0.7814 BER 2010 0.8656 

LIS 2010 0.4109 LIS 2010 0.5229 LIS 2010 0.4943 

MAD 2010 0.5562 MAD 2010 0.8332 MAD 2010 0.8417 

BAL 2010 0.4555 BAL 2010 0.5920 BAL 2010 0.6333 

PAR 2010 0.8786 PAR 2010 0.8609 PAR 2010 0.8307 

RMT 2010 0.5237 RMT 2010 0.6168 RMT 2010 0.6741 

LON 2010 0.4594 LON 2010 0.6434 LON 2010 0.6547 

GLB 2010 0.3172 GLB 2010 0.6701 GLB 2010 0.6522 
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Table 23 Scenarios S4.1 –Inclusive Growth (equal weigh), and S4.2 –Inclusive Growth (balanced) at 
megaregional level (1995-2010)  

  

Year Identification 1 S4.1 Identification 2 S4.2 

1995 

NMR 1995 0.1353 NMR 1995 0.0818 

VIB 1995 0.3619 VIB 1995 0.2815 

FRG 1995 0.3133 FRG 1995 0.2851 

AMB 1995 0.2520 AMB 1995 0.1630 

PRA 1995 0.5659 PRA 1995 0.4842 

LIS 1995 0.2728 LIS 1995 0.2220 

MAD 1995 0.5176 MAD 1995 0.4253 

BAL 1995 0.3359 BAL 1995 0.2737 

PAR 1995 0.7528 PAR 1995 0.7203 

LON 1995 0.4650 LON 1995 0.4457 

GLB 1995 0.3953 GLB 1995 0.3217 

2000 

NMR 2000 0.2549 NMR 2000 0.1882 

VIB 2000 0.3008 VIB 2000 0.2441 

FRG 2000 0.8428 FRG 2000 0.8398 

AMB 2000 0.6070 AMB 2000 0.5567 

PRA 2000 0.6388 PRA 2000 0.5971 

BER 2000 0.7153 BER 2000 0.6488 

LIS 2000 0.3453 LIS 2000 0.3104 

MAD 2000 0.7848 MAD 2000 0.7570 

BAL 2000 0.5310 BAL 2000 0.5035 

PAR 2000 0.8681 PAR 2000 0.8643 

RMT 2000 0.5697 RMT 2000 0.5489 

LON 2000 0.6186 LON 2000 0.6008 

GLB 2000 0.4464 GLB 2000 0.3883 

2005 

NMR 2005 0.2940 NMR 2005 0.2234 

VIB 2005 0.4014 VIB 2005 0.3486 

FRG 2005 0.8550 FRG 2005 0.8434 

AMB 2005 0.7395 AMB 2005 0.7284 

PRA 2005 0.6667 PRA 2005 0.6349 

BER 2005 0.6017 BER 2005 0.5178 

LIS 2005 0.4406 LIS 2005 0.3955 

MAD 2005 0.7107 MAD 2005 0.6394 

BAL 2005 0.6062 BAL 2005 0.5802 

PAR 2005 0.8437 PAR 2005 0.8396 

RMT 2005 0.6136 RMT 2005 0.6033 

LON 2005 0.6390 LON 2005 0.6097 

GLB 2005 0.5592 GLB 2005 0.4851 

2010 

NMR 2010 0.3324 NMR 2010 0.2590 

VIB 2010 0.5610 VIB 2010 0.4991 

FRG 2010 0.8373 FRG 2010 0.8181 

AMB 2010 0.7515 AMB 2010 0.7301 

PRA 2010 0.6584 PRA 2010 0.6194 

BER 2010 0.6963 BER 2010 0.6210 

LIS 2010 0.4679 LIS 2010 0.4435 

MAD 2010 0.7203 MAD 2010 0.6605 

BAL 2010 0.5472 BAL 2010 0.5087 

PAR 2010 0.8595 PAR 2010 0.8484 

RMT 2010 0.5947 RMT 2010 0.5614 

LON 2010 0.5700 LON 2010 0.5289 

GLB 2010 0.5178 GLB 2010 0.4437 
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Conclusions 

General remarks 
Over the last two centuries, the boundaries of the city have been constantly redefined. Trullén 

et al. (2013) explain that the real force behind the city’s change of scale has been the liberating 

effect of so called “spatially mobile external economies” which are not constrained to a single 

place by agglomeration forces. This driving force is able to create what Lang and Nelson (2009) 

call “large-scale trans-metropolitan urban structures”, such as urban regions and megaregions. 

The development of these urban networks is cause and consequence of the densification and 

acceleration of socioeconomic processes, resulting in increasing levels of complexity. From an 

economic point of view, the megaregion scale of organization appears to be accelerating global 

change (Grazi et al., 2008), concentrating a huge amount of world production and innovation, 

and is associated with higher levels of per capita income and creativity (Florida et al.,2008; Ross, 

2009; Marull et al., 2013). However, an issue that has received less attention in the literature 

(exceptions are Wheeler, 2009 and Campbell, 2009) is that once formed megaregions also 

become efficient in resource consumption and promote well-being (Marull and Boix, 2017). 

The question we raise is whether, once formed, the subsequent dynamics of urban networks 

are sustainable or not. A positive expectation of inclusive growth of existing megaregions 

(integrating social, economic and ecological dimensions) is a reason to facilitate the conditions 

for the formation of new ones. On the other hand, evidence that existing megaregions are 

evolving towards positions of reduced sustainability provides arguments for preventing new 

ones being formed, while for existing urban networks although it could be difficult to dissolve 

them there could nevertheless be attempts to manage them through pro-active policy. 

Are the dynamics of urban networks sustainable? We explore the hypothesis that increasing 

complexity in regions and megaregions implies less demand on resources needed to generate 

organized information and social cohesion, thereby making the urban systems more efficient 

and stable. This study proposes new structural indices for measuring sustainable urban network 

progress according to different conceptual scenarios, at the regional and megaregional scale.  

Proposed model 
We use night-time light (NLT) data from the broadband near-visible infrared channel of the 

DMSP-OLS satellite sensor to monitor the dynamics of urbanization. We propose four indices for 

sustainable progress of networks of cities, according with the following conceptual scenarios: S1 

–Economic development (mainstream economic model), S2 –Social sustainability (based on 

social equality), S3 -Environmental sustainability (based on resource consumption) and S4 –

Inclusive growth (with two variations: S4.1: equal factor weigh –economic, social and ecological; 

and S4.1: balanced). These indices are derived from the integration of different indicators 

obtained by structural equation models.  

The statistics used are component analysis, factor analysis, cluster analysis, structural analysis, 

and a probabilistic method for the indices development. The models and indices approximate 

the problem raised over the necessity of a standard way to determine the sustainable progress 

within a given urban region, beyond the GDP. It has accomplished the goal of providing tools to 

undercover the hidden factors of interest, to model its relationships as a measure of urban 

system progress. In the study, we apply the integration of economic, social and ecological 

indicators into indices (according to four conceptual scenarios) to the entire European NUTS 3 

regions and the 12 existing megaregions from 1995 to 2010 –period with available satellite data. 
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Preliminary results suggest the index S4.2 as the better measure of the urban network sustainable 

progress, according to the principle of inclusive growth, which is the balanced development of 

urban systems towards social equality, ecological efficiency and economic competiveness.  

The results also prove the decoupling of economic growth and the social and environmental 

development by showing regions that have improved at it without an economic growth above 

average. The main conclusion is that regional and megaregional urban systems respond to 

increasing complexity by adapting their relational structures to become more efficient and 

stable, and become more sustainable forms of organization. Consequently, it could be necessary 

to re-direct land use policies towards improving sustainability at the level of the megaregion. 

Policy implications 
The functioning of agglomeration economies, in the form of urbanization economies and 

network economies, and the transformation of the economic model towards a knowledge-

based economy, allows rising levels of GDPpc while, at the same time, reduce energy intensity 

–lowering impact in terms of entropy, and increase urban organized information –promoting 

social equality. The experience of the best performing megaregions shows that this is possible. 

It follows that the change in the economic model, with increasing importance of agglomeration 

economies where knowledge becomes the key productive factor, should be the driver of change 

in the sustainable urban progress. 

It is known that as a system becomes more complex it reduces its dependence on energy but 

increases its organized information and knowledge. By analogy with systems of cities, it means 

that in the future, urban competitiveness will rely on economic models based more on 

knowledge than on consumption of resources. Trying to change the economic model without 

considering the role played by agglomeration economies, could have unexpected negative 

impacts and cause discontinuities in economic but also in social and environmental terms. 

The results obtained in this paper can also be interpreted as a contribution to the dialogue 

between two lines of research, the ecological economy and the urban ecology, at a new spatial 

scale to explore sustainability: the emerging megaregions. Moreover, our results could be put 

in relation with the Strategy Europe 2020, which aims at a “smart, sustainable and inclusive 

growth”, highlighting the role that urban networks can play in achieving these objectives.  

Further research 
In developed countries, the existing economic model emphasizes the GDP growth, which implies 

social and environmental instability. It also shades developing countries to alternatives for more 

sustainable models of urban progress. Development based on economic growth has down 

natural resources. Much of the generated wealth has been unequally distributed (Wilkinson and 

Pickett, 2009). New research should analyze the contribution of urban networks to the solution 

of the prevailing economic model crisis and its social and ecological consequences.  

There is a claim to defeat GDP as the official measure of development. The UN announced the 

Sustainable Development Goals, a set of international objectives to improve global well-being. 

Developing integrated measures of urban sustainable progress attached to these goals could 

offer the opportunity to define what well-being means, how to measure and achieve it. Lasting 

the present economic model would tolerate the increase of social inequality and would ignore 

the continued destruction of the natural capital. The current recognition that GDP is an 

inadequate measure of sustainable progress (Constanza et al., 2014), suggests to admit the 
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complexity of the interaction between social, ecological and economic factors in global urban 

systems.  

The main objective of the first phase of this line of research has been to create integrated indices 

of urban network sustainable progress according to four conceptual scenarios, able to measure 

the performance and dynamics of urban systems at regional and megaregional levels, based on 

official (Eurostat) and satellite (NASA) data, and given standardized socio-economic-ecological 

factors. However, it is necessary to improve and validate the methodology, and to apply the 

models and indices at metropolitan level as well. 

Improvements in the scenarios formulation could be made. Larger data sets with larger periods 

should be studied, and an easy way to relate different scales of observations in terms of region 

size have to be developed to truly understand the conceptual variables of interest at different 

levels. More variables and factors, as long as they comply with the conceptual framework, must 

be analyzed to account for the variance that was not explained in the three-factor model. With 

the availability of larger periods, time series analysis could be implemented to create an 

autoregressive model to predict the variation of the variables. Last, an aspect that was not 

studied was the causality between variables.  

Finally, it would be interesting to model the temporal variation of night-time light (NTL) 

intensities obtained from the satellite database. A better understanding of this NTL territorial 

matrix variation of a given area (i.e. using cellular automata modeling), and the possibility of 

making useful predictions about urban development scenarios related to social-economic-

ecological models, could be applied in regional planning and land use policies. 
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